// Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT license. #include #include #include #include #include #include #include "index.h" #include "disk_utils.h" #include "math_utils.h" #include "memory_mapper.h" #include "pq_flash_index.h" #include "partition.h" #include "timer.h" #include "program_options_utils.hpp" #ifndef _WINDOWS #include #include #include #include "linux_aligned_file_reader.h" #else #ifdef USE_BING_INFRA #include "bing_aligned_file_reader.h" #else #include "windows_aligned_file_reader.h" #endif #endif namespace po = boost::program_options; #define WARMUP false void print_stats(std::string category, std::vector percentiles, std::vector results) { diskann::cout << std::setw(20) << category << ": " << std::flush; for (uint32_t s = 0; s < percentiles.size(); s++) { diskann::cout << std::setw(8) << percentiles[s] << "%"; } diskann::cout << std::endl; diskann::cout << std::setw(22) << " " << std::flush; for (uint32_t s = 0; s < percentiles.size(); s++) { diskann::cout << std::setw(9) << results[s]; } diskann::cout << std::endl; } template int search_disk_index(diskann::Metric &metric, const std::string &index_path_prefix, const std::string &query_file, std::string >_file, const uint32_t num_threads, const float search_range, const uint32_t beamwidth, const uint32_t num_nodes_to_cache, const std::vector &Lvec) { std::string pq_prefix = index_path_prefix + "_pq"; std::string disk_index_file = index_path_prefix + "_disk.index"; std::string warmup_query_file = index_path_prefix + "_sample_data.bin"; diskann::cout << "Search parameters: #threads: " << num_threads << ", "; if (beamwidth <= 0) diskann::cout << "beamwidth to be optimized for each L value" << std::endl; else diskann::cout << " beamwidth: " << beamwidth << std::endl; // load query bin T *query = nullptr; std::vector> groundtruth_ids; size_t query_num, query_dim, query_aligned_dim, gt_num; diskann::load_aligned_bin(query_file, query, query_num, query_dim, query_aligned_dim); bool calc_recall_flag = false; if (gt_file != std::string("null") && file_exists(gt_file)) { diskann::load_range_truthset(gt_file, groundtruth_ids, gt_num); // use for range search type of truthset // diskann::prune_truthset_for_range(gt_file, search_range, // groundtruth_ids, gt_num); // use for traditional truthset if (gt_num != query_num) { diskann::cout << "Error. Mismatch in number of queries and ground truth data" << std::endl; return -1; } calc_recall_flag = true; } std::shared_ptr reader = nullptr; #ifdef _WINDOWS #ifndef USE_BING_INFRA reader.reset(new WindowsAlignedFileReader()); #else reader.reset(new diskann::BingAlignedFileReader()); #endif #else reader.reset(new LinuxAlignedFileReader()); #endif std::unique_ptr> _pFlashIndex( new diskann::PQFlashIndex(reader, metric)); int res = _pFlashIndex->load(num_threads, index_path_prefix.c_str()); if (res != 0) { return res; } // cache bfs levels std::vector node_list; diskann::cout << "Caching " << num_nodes_to_cache << " BFS nodes around medoid(s)" << std::endl; _pFlashIndex->cache_bfs_levels(num_nodes_to_cache, node_list); // _pFlashIndex->generate_cache_list_from_sample_queries( // warmup_query_file, 15, 6, num_nodes_to_cache, num_threads, // node_list); _pFlashIndex->load_cache_list(node_list); node_list.clear(); node_list.shrink_to_fit(); omp_set_num_threads(num_threads); uint64_t warmup_L = 20; uint64_t warmup_num = 0, warmup_dim = 0, warmup_aligned_dim = 0; T *warmup = nullptr; if (WARMUP) { if (file_exists(warmup_query_file)) { diskann::load_aligned_bin(warmup_query_file, warmup, warmup_num, warmup_dim, warmup_aligned_dim); } else { warmup_num = (std::min)((uint32_t)150000, (uint32_t)15000 * num_threads); warmup_dim = query_dim; warmup_aligned_dim = query_aligned_dim; diskann::alloc_aligned(((void **)&warmup), warmup_num * warmup_aligned_dim * sizeof(T), 8 * sizeof(T)); std::memset(warmup, 0, warmup_num * warmup_aligned_dim * sizeof(T)); std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution<> dis(-128, 127); for (uint32_t i = 0; i < warmup_num; i++) { for (uint32_t d = 0; d < warmup_dim; d++) { warmup[i * warmup_aligned_dim + d] = (T)dis(gen); } } } diskann::cout << "Warming up index... " << std::flush; std::vector warmup_result_ids_64(warmup_num, 0); std::vector warmup_result_dists(warmup_num, 0); #pragma omp parallel for schedule(dynamic, 1) for (int64_t i = 0; i < (int64_t)warmup_num; i++) { _pFlashIndex->cached_beam_search(warmup + (i * warmup_aligned_dim), 1, warmup_L, warmup_result_ids_64.data() + (i * 1), warmup_result_dists.data() + (i * 1), 4); } diskann::cout << "..done" << std::endl; } diskann::cout.setf(std::ios_base::fixed, std::ios_base::floatfield); diskann::cout.precision(2); std::string recall_string = "Recall@rng=" + std::to_string(search_range); diskann::cout << std::setw(6) << "L" << std::setw(12) << "Beamwidth" << std::setw(16) << "QPS" << std::setw(16) << "Mean Latency" << std::setw(16) << "99.9 Latency" << std::setw(16) << "Mean IOs" << std::setw(16) << "CPU (s)"; if (calc_recall_flag) { diskann::cout << std::setw(16) << recall_string << std::endl; } else diskann::cout << std::endl; diskann::cout << "===============================================================" "===========================================" << std::endl; std::vector>> query_result_ids(Lvec.size()); uint32_t optimized_beamwidth = 2; uint32_t max_list_size = 10000; for (uint32_t test_id = 0; test_id < Lvec.size(); test_id++) { uint32_t L = Lvec[test_id]; if (beamwidth <= 0) { optimized_beamwidth = optimize_beamwidth(_pFlashIndex, warmup, warmup_num, warmup_aligned_dim, L, optimized_beamwidth); } else optimized_beamwidth = beamwidth; query_result_ids[test_id].clear(); query_result_ids[test_id].resize(query_num); diskann::QueryStats *stats = new diskann::QueryStats[query_num]; auto s = std::chrono::high_resolution_clock::now(); #pragma omp parallel for schedule(dynamic, 1) for (int64_t i = 0; i < (int64_t)query_num; i++) { std::vector indices; std::vector distances; uint32_t res_count = _pFlashIndex->range_search(query + (i * query_aligned_dim), search_range, L, max_list_size, indices, distances, optimized_beamwidth, stats + i); query_result_ids[test_id][i].reserve(res_count); query_result_ids[test_id][i].resize(res_count); for (uint32_t idx = 0; idx < res_count; idx++) query_result_ids[test_id][i][idx] = (uint32_t)indices[idx]; } auto e = std::chrono::high_resolution_clock::now(); std::chrono::duration diff = e - s; auto qps = (1.0 * query_num) / (1.0 * diff.count()); auto mean_latency = diskann::get_mean_stats( stats, query_num, [](const diskann::QueryStats &stats) { return stats.total_us; }); auto latency_999 = diskann::get_percentile_stats( stats, query_num, 0.999, [](const diskann::QueryStats &stats) { return stats.total_us; }); auto mean_ios = diskann::get_mean_stats(stats, query_num, [](const diskann::QueryStats &stats) { return stats.n_ios; }); double mean_cpuus = diskann::get_mean_stats( stats, query_num, [](const diskann::QueryStats &stats) { return stats.cpu_us; }); double recall = 0; double ratio_of_sums = 0; if (calc_recall_flag) { recall = diskann::calculate_range_search_recall((uint32_t)query_num, groundtruth_ids, query_result_ids[test_id]); uint32_t total_true_positive = 0; uint32_t total_positive = 0; for (uint32_t i = 0; i < query_num; i++) { total_true_positive += (uint32_t)query_result_ids[test_id][i].size(); total_positive += (uint32_t)groundtruth_ids[i].size(); } ratio_of_sums = (1.0 * total_true_positive) / (1.0 * total_positive); } diskann::cout << std::setw(6) << L << std::setw(12) << optimized_beamwidth << std::setw(16) << qps << std::setw(16) << mean_latency << std::setw(16) << latency_999 << std::setw(16) << mean_ios << std::setw(16) << mean_cpuus; if (calc_recall_flag) { diskann::cout << std::setw(16) << recall << "," << ratio_of_sums << std::endl; } else diskann::cout << std::endl; } diskann::cout << "Done searching. " << std::endl; diskann::aligned_free(query); if (warmup != nullptr) diskann::aligned_free(warmup); return 0; } int main(int argc, char **argv) { std::string data_type, dist_fn, index_path_prefix, result_path_prefix, query_file, gt_file; uint32_t num_threads, W, num_nodes_to_cache; std::vector Lvec; float range; po::options_description desc{program_options_utils::make_program_description( "range_search_disk_index", "Searches disk DiskANN indexes using ranges")}; try { desc.add_options()("help,h", "Print information on arguments"); // Required parameters po::options_description required_configs("Required"); required_configs.add_options()("data_type", po::value(&data_type)->required(), program_options_utils::DATA_TYPE_DESCRIPTION); required_configs.add_options()("dist_fn", po::value(&dist_fn)->required(), program_options_utils::DISTANCE_FUNCTION_DESCRIPTION); required_configs.add_options()("index_path_prefix", po::value(&index_path_prefix)->required(), program_options_utils::INDEX_PATH_PREFIX_DESCRIPTION); required_configs.add_options()("query_file", po::value(&query_file)->required(), program_options_utils::QUERY_FILE_DESCRIPTION); required_configs.add_options()("search_list,L", po::value>(&Lvec)->multitoken()->required(), program_options_utils::SEARCH_LIST_DESCRIPTION); required_configs.add_options()("range_threshold,K", po::value(&range)->required(), "Number of neighbors to be returned"); // Optional parameters po::options_description optional_configs("Optional"); optional_configs.add_options()("num_threads,T", po::value(&num_threads)->default_value(omp_get_num_procs()), program_options_utils::NUMBER_THREADS_DESCRIPTION); optional_configs.add_options()("gt_file", po::value(>_file)->default_value(std::string("null")), program_options_utils::GROUND_TRUTH_FILE_DESCRIPTION); optional_configs.add_options()("num_nodes_to_cache", po::value(&num_nodes_to_cache)->default_value(0), program_options_utils::NUMBER_OF_NODES_TO_CACHE); optional_configs.add_options()("beamwidth,W", po::value(&W)->default_value(2), program_options_utils::BEAMWIDTH); // Merge required and optional parameters desc.add(required_configs).add(optional_configs); po::variables_map vm; po::store(po::parse_command_line(argc, argv, desc), vm); if (vm.count("help")) { std::cout << desc; return 0; } po::notify(vm); } catch (const std::exception &ex) { std::cerr << ex.what() << '\n'; return -1; } diskann::Metric metric; if (dist_fn == std::string("mips")) { metric = diskann::Metric::INNER_PRODUCT; } else if (dist_fn == std::string("l2")) { metric = diskann::Metric::L2; } else if (dist_fn == std::string("cosine")) { metric = diskann::Metric::COSINE; } else { std::cout << "Unsupported distance function. Currently only L2/ Inner " "Product/Cosine are supported." << std::endl; return -1; } if ((data_type != std::string("float")) && (metric == diskann::Metric::INNER_PRODUCT)) { std::cout << "Currently support only floating point data for Inner Product." << std::endl; return -1; } try { if (data_type == std::string("float")) return search_disk_index(metric, index_path_prefix, query_file, gt_file, num_threads, range, W, num_nodes_to_cache, Lvec); else if (data_type == std::string("int8")) return search_disk_index(metric, index_path_prefix, query_file, gt_file, num_threads, range, W, num_nodes_to_cache, Lvec); else if (data_type == std::string("uint8")) return search_disk_index(metric, index_path_prefix, query_file, gt_file, num_threads, range, W, num_nodes_to_cache, Lvec); else { std::cerr << "Unsupported data type. Use float or int8 or uint8" << std::endl; return -1; } } catch (const std::exception &e) { std::cout << std::string(e.what()) << std::endl; diskann::cerr << "Index search failed." << std::endl; return -1; } }