/** * MIT License * * Copyright (c) 2017 Tessil * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef TSL_ROBIN_HASH_H #define TSL_ROBIN_HASH_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "robin_growth_policy.h" namespace tsl { namespace detail_robin_hash { template struct make_void { using type = void; }; template struct has_is_transparent: std::false_type { }; template struct has_is_transparent::type>: std::true_type { }; template struct is_power_of_two_policy: std::false_type { }; template struct is_power_of_two_policy>: std::true_type { }; using truncated_hash_type = std::uint_least32_t; /** * Helper class that store a truncated hash if StoreHash is true and nothing otherwise. */ template class bucket_entry_hash { public: bool bucket_hash_equal(std::size_t /*hash*/) const noexcept { return true; } truncated_hash_type truncated_hash() const noexcept { return 0; } protected: void set_hash(truncated_hash_type /*hash*/) noexcept { } }; template<> class bucket_entry_hash { public: bool bucket_hash_equal(std::size_t hash) const noexcept { return m_hash == truncated_hash_type(hash); } truncated_hash_type truncated_hash() const noexcept { return m_hash; } protected: void set_hash(truncated_hash_type hash) noexcept { m_hash = truncated_hash_type(hash); } private: truncated_hash_type m_hash; }; /** * Each bucket entry has: * - A value of type `ValueType`. * - An integer to store how far the value of the bucket, if any, is from its ideal bucket * (ex: if the current bucket 5 has the value 'foo' and `hash('foo') % nb_buckets` == 3, * `dist_from_ideal_bucket()` will return 2 as the current value of the bucket is two * buckets away from its ideal bucket) * If there is no value in the bucket (i.e. `empty()` is true) `dist_from_ideal_bucket()` will be < 0. * - A marker which tells us if the bucket is the last bucket of the bucket array (useful for the * iterator of the hash table). * - If `StoreHash` is true, 32 bits of the hash of the value, if any, are also stored in the bucket. * If the size of the hash is more than 32 bits, it is truncated. We don't store the full hash * as storing the hash is a potential opportunity to use the unused space due to the alignement * of the bucket_entry structure. We can thus potentially store the hash without any extra space * (which would not be possible with 64 bits of the hash). */ template class bucket_entry: public bucket_entry_hash { using bucket_hash = bucket_entry_hash; public: using value_type = ValueType; using distance_type = std::int_least16_t; bucket_entry() noexcept: bucket_hash(), m_dist_from_ideal_bucket(EMPTY_MARKER_DIST_FROM_IDEAL_BUCKET), m_last_bucket(false) { tsl_assert(empty()); } bucket_entry(bool last_bucket) noexcept: bucket_hash(), m_dist_from_ideal_bucket(EMPTY_MARKER_DIST_FROM_IDEAL_BUCKET), m_last_bucket(last_bucket) { tsl_assert(empty()); } bucket_entry(const bucket_entry& other) noexcept(std::is_nothrow_copy_constructible::value): bucket_hash(other), m_dist_from_ideal_bucket(EMPTY_MARKER_DIST_FROM_IDEAL_BUCKET), m_last_bucket(other.m_last_bucket) { if(!other.empty()) { ::new (static_cast(std::addressof(m_value))) value_type(other.value()); m_dist_from_ideal_bucket = other.m_dist_from_ideal_bucket; } } /** * Never really used, but still necessary as we must call resize on an empty `std::vector`. * and we need to support move-only types. See robin_hash constructor for details. */ bucket_entry(bucket_entry&& other) noexcept(std::is_nothrow_move_constructible::value): bucket_hash(std::move(other)), m_dist_from_ideal_bucket(EMPTY_MARKER_DIST_FROM_IDEAL_BUCKET), m_last_bucket(other.m_last_bucket) { if(!other.empty()) { ::new (static_cast(std::addressof(m_value))) value_type(std::move(other.value())); m_dist_from_ideal_bucket = other.m_dist_from_ideal_bucket; } } bucket_entry& operator=(const bucket_entry& other) noexcept(std::is_nothrow_copy_constructible::value) { if(this != &other) { clear(); bucket_hash::operator=(other); if(!other.empty()) { ::new (static_cast(std::addressof(m_value))) value_type(other.value()); } m_dist_from_ideal_bucket = other.m_dist_from_ideal_bucket; m_last_bucket = other.m_last_bucket; } return *this; } bucket_entry& operator=(bucket_entry&& ) = delete; ~bucket_entry() noexcept { clear(); } void clear() noexcept { if(!empty()) { destroy_value(); m_dist_from_ideal_bucket = EMPTY_MARKER_DIST_FROM_IDEAL_BUCKET; } } bool empty() const noexcept { return m_dist_from_ideal_bucket == EMPTY_MARKER_DIST_FROM_IDEAL_BUCKET; } value_type& value() noexcept { tsl_assert(!empty()); return *reinterpret_cast(std::addressof(m_value)); } const value_type& value() const noexcept { tsl_assert(!empty()); return *reinterpret_cast(std::addressof(m_value)); } distance_type dist_from_ideal_bucket() const noexcept { return m_dist_from_ideal_bucket; } bool last_bucket() const noexcept { return m_last_bucket; } void set_as_last_bucket() noexcept { m_last_bucket = true; } template void set_value_of_empty_bucket(distance_type dist_from_ideal_bucket, truncated_hash_type hash, Args&&... value_type_args) { tsl_assert(dist_from_ideal_bucket >= 0); tsl_assert(empty()); ::new (static_cast(std::addressof(m_value))) value_type(std::forward(value_type_args)...); this->set_hash(hash); m_dist_from_ideal_bucket = dist_from_ideal_bucket; tsl_assert(!empty()); } void swap_with_value_in_bucket(distance_type& dist_from_ideal_bucket, truncated_hash_type& hash, value_type& value) { tsl_assert(!empty()); using std::swap; swap(value, this->value()); swap(dist_from_ideal_bucket, m_dist_from_ideal_bucket); // Avoid warning of unused variable if StoreHash is false (void) hash; if(StoreHash) { const truncated_hash_type tmp_hash = this->truncated_hash(); this->set_hash(hash); hash = tmp_hash; } } static truncated_hash_type truncate_hash(std::size_t hash) noexcept { return truncated_hash_type(hash); } private: void destroy_value() noexcept { tsl_assert(!empty()); value().~value_type(); } private: using storage = typename std::aligned_storage::type; static const distance_type EMPTY_MARKER_DIST_FROM_IDEAL_BUCKET = -1; distance_type m_dist_from_ideal_bucket; bool m_last_bucket; storage m_value; }; /** * Internal common class used by `robin_map` and `robin_set`. * * ValueType is what will be stored by `robin_hash` (usually `std::pair` for map and `Key` for set). * * `KeySelect` should be a `FunctionObject` which takes a `ValueType` in parameter and returns a * reference to the key. * * `ValueSelect` should be a `FunctionObject` which takes a `ValueType` in parameter and returns a * reference to the value. `ValueSelect` should be void if there is no value (in a set for example). * * The strong exception guarantee only holds if the expression * `std::is_nothrow_swappable::value && std::is_nothrow_move_constructible::value` is true. * * Behaviour is undefined if the destructor of `ValueType` throws. */ template class robin_hash: private Hash, private KeyEqual, private GrowthPolicy { private: template using has_mapped_type = typename std::integral_constant::value>; static_assert(noexcept(std::declval().bucket_for_hash(std::size_t(0))), "GrowthPolicy::bucket_for_hash must be noexcept."); static_assert(noexcept(std::declval().clear()), "GrowthPolicy::clear must be noexcept."); public: template class robin_iterator; using key_type = typename KeySelect::key_type; using value_type = ValueType; using size_type = std::size_t; using difference_type = std::ptrdiff_t; using hasher = Hash; using key_equal = KeyEqual; using allocator_type = Allocator; using reference = value_type&; using const_reference = const value_type&; using pointer = value_type*; using const_pointer = const value_type*; using iterator = robin_iterator; using const_iterator = robin_iterator; private: /** * Either store the hash because we are asked by the `StoreHash` template parameter * or store the hash because it doesn't cost us anything in size and can be used to speed up rehash. */ static constexpr bool STORE_HASH = StoreHash || ( (sizeof(tsl::detail_robin_hash::bucket_entry) == sizeof(tsl::detail_robin_hash::bucket_entry)) && (sizeof(std::size_t) == sizeof(truncated_hash_type) || is_power_of_two_policy::value) && // Don't store the hash for primitive types with default hash. (!std::is_arithmetic::value || !std::is_same>::value) ); /** * Only use the stored hash on lookup if we are explictly asked. We are not sure how slow * the KeyEqual operation is. An extra comparison may slow things down with a fast KeyEqual. */ static constexpr bool USE_STORED_HASH_ON_LOOKUP = StoreHash; /** * We can only use the hash on rehash if the size of the hash type is the same as the stored one or * if we use a power of two modulo. In the case of the power of two modulo, we just mask * the least significant bytes, we just have to check that the truncated_hash_type didn't truncated * more bytes. */ static bool USE_STORED_HASH_ON_REHASH(size_type bucket_count) { (void) bucket_count; if(STORE_HASH && sizeof(std::size_t) == sizeof(truncated_hash_type)) { return true; } else if(STORE_HASH && is_power_of_two_policy::value) { tsl_assert(bucket_count > 0); return (bucket_count - 1) <= (std::numeric_limits::max)(); } else { return false; } } using bucket_entry = tsl::detail_robin_hash::bucket_entry; using distance_type = typename bucket_entry::distance_type; using buckets_allocator = typename std::allocator_traits::template rebind_alloc; using buckets_container_type = std::vector; public: /** * The 'operator*()' and 'operator->()' methods return a const reference and const pointer respectively to the * stored value type. * * In case of a map, to get a mutable reference to the value associated to a key (the '.second' in the * stored pair), you have to call 'value()'. * * The main reason for this is that if we returned a `std::pair&` instead * of a `const std::pair&`, the user may modify the key which will put the map in a undefined state. */ template class robin_iterator { friend class robin_hash; private: using iterator_bucket = typename std::conditional::type; robin_iterator(iterator_bucket it) noexcept: m_iterator(it) { } public: using iterator_category = std::forward_iterator_tag; using value_type = const typename robin_hash::value_type; using difference_type = std::ptrdiff_t; using reference = value_type&; using pointer = value_type*; robin_iterator() noexcept { } robin_iterator(const robin_iterator& other) noexcept: m_iterator(other.m_iterator) { } const typename robin_hash::key_type& key() const { return KeySelect()(m_iterator->value()); } template::value && IsConst>::type* = nullptr> const typename U::value_type& value() const { return U()(m_iterator->value()); } template::value && !IsConst>::type* = nullptr> typename U::value_type& value() { return U()(m_iterator->value()); } reference operator*() const { return m_iterator->value(); } pointer operator->() const { return std::addressof(m_iterator->value()); } robin_iterator& operator++() { while(true) { if(m_iterator->last_bucket()) { ++m_iterator; return *this; } ++m_iterator; if(!m_iterator->empty()) { return *this; } } } robin_iterator operator++(int) { robin_iterator tmp(*this); ++*this; return tmp; } friend bool operator==(const robin_iterator& lhs, const robin_iterator& rhs) { return lhs.m_iterator == rhs.m_iterator; } friend bool operator!=(const robin_iterator& lhs, const robin_iterator& rhs) { return !(lhs == rhs); } private: iterator_bucket m_iterator; }; public: robin_hash(size_type bucket_count, const Hash& hash, const KeyEqual& equal, const Allocator& alloc, float max_load_factor): Hash(hash), KeyEqual(equal), GrowthPolicy(bucket_count), m_buckets(alloc), m_first_or_empty_bucket(static_empty_bucket_ptr()), m_bucket_count(bucket_count), m_nb_elements(0), m_grow_on_next_insert(false) { if(bucket_count > max_bucket_count()) { TSL_THROW_OR_TERMINATE(std::length_error, "The map exceeds its maxmimum size."); } if(m_bucket_count > 0) { /* * We can't use the `vector(size_type count, const Allocator& alloc)` constructor * as it's only available in C++14 and we need to support C++11. We thus must resize after using * the `vector(const Allocator& alloc)` constructor. * * We can't use `vector(size_type count, const T& value, const Allocator& alloc)` as it requires the * value T to be copyable. */ m_buckets.resize(m_bucket_count); m_first_or_empty_bucket = m_buckets.data(); tsl_assert(!m_buckets.empty()); m_buckets.back().set_as_last_bucket(); } this->max_load_factor(max_load_factor); } robin_hash(const robin_hash& other): Hash(other), KeyEqual(other), GrowthPolicy(other), m_buckets(other.m_buckets), m_first_or_empty_bucket(m_buckets.empty()?static_empty_bucket_ptr():m_buckets.data()), m_bucket_count(other.m_bucket_count), m_nb_elements(other.m_nb_elements), m_load_threshold(other.m_load_threshold), m_max_load_factor(other.m_max_load_factor), m_grow_on_next_insert(other.m_grow_on_next_insert) { } robin_hash(robin_hash&& other) noexcept(std::is_nothrow_move_constructible::value && std::is_nothrow_move_constructible::value && std::is_nothrow_move_constructible::value && std::is_nothrow_move_constructible::value) : Hash(std::move(static_cast(other))), KeyEqual(std::move(static_cast(other))), GrowthPolicy(std::move(static_cast(other))), m_buckets(std::move(other.m_buckets)), m_first_or_empty_bucket(m_buckets.empty()?static_empty_bucket_ptr():m_buckets.data()), m_bucket_count(other.m_bucket_count), m_nb_elements(other.m_nb_elements), m_load_threshold(other.m_load_threshold), m_max_load_factor(other.m_max_load_factor), m_grow_on_next_insert(other.m_grow_on_next_insert) { other.GrowthPolicy::clear(); other.m_buckets.clear(); other.m_first_or_empty_bucket = static_empty_bucket_ptr(); other.m_bucket_count = 0; other.m_nb_elements = 0; other.m_load_threshold = 0; other.m_grow_on_next_insert = false; } robin_hash& operator=(const robin_hash& other) { if(&other != this) { Hash::operator=(other); KeyEqual::operator=(other); GrowthPolicy::operator=(other); m_buckets = other.m_buckets; m_first_or_empty_bucket = m_buckets.empty()?static_empty_bucket_ptr(): m_buckets.data(); m_bucket_count = other.m_bucket_count; m_nb_elements = other.m_nb_elements; m_load_threshold = other.m_load_threshold; m_max_load_factor = other.m_max_load_factor; m_grow_on_next_insert = other.m_grow_on_next_insert; } return *this; } robin_hash& operator=(robin_hash&& other) { other.swap(*this); other.clear(); return *this; } allocator_type get_allocator() const { return m_buckets.get_allocator(); } /* * Iterators */ iterator begin() noexcept { auto begin = m_buckets.begin(); while(begin != m_buckets.end() && begin->empty()) { ++begin; } return iterator(begin); } const_iterator begin() const noexcept { return cbegin(); } const_iterator cbegin() const noexcept { auto begin = m_buckets.cbegin(); while(begin != m_buckets.cend() && begin->empty()) { ++begin; } return const_iterator(begin); } iterator end() noexcept { return iterator(m_buckets.end()); } const_iterator end() const noexcept { return cend(); } const_iterator cend() const noexcept { return const_iterator(m_buckets.cend()); } /* * Capacity */ bool empty() const noexcept { return m_nb_elements == 0; } size_type size() const noexcept { return m_nb_elements; } size_type max_size() const noexcept { return m_buckets.max_size(); } /* * Modifiers */ void clear() noexcept { for(auto& bucket: m_buckets) { bucket.clear(); } m_nb_elements = 0; m_grow_on_next_insert = false; } template std::pair insert(P&& value) { return insert_impl(KeySelect()(value), std::forward

(value)); } template iterator insert(const_iterator hint, P&& value) { if(hint != cend() && compare_keys(KeySelect()(*hint), KeySelect()(value))) { return mutable_iterator(hint); } return insert(std::forward

(value)).first; } template void insert(InputIt first, InputIt last) { if(std::is_base_of::iterator_category>::value) { const auto nb_elements_insert = std::distance(first, last); const size_type nb_free_buckets = m_load_threshold - size(); tsl_assert(m_load_threshold >= size()); if(nb_elements_insert > 0 && nb_free_buckets < size_type(nb_elements_insert)) { reserve(size() + size_type(nb_elements_insert)); } } for(; first != last; ++first) { insert(*first); } } template std::pair insert_or_assign(K&& key, M&& obj) { auto it = try_emplace(std::forward(key), std::forward(obj)); if(!it.second) { it.first.value() = std::forward(obj); } return it; } template iterator insert_or_assign(const_iterator hint, K&& key, M&& obj) { if(hint != cend() && compare_keys(KeySelect()(*hint), key)) { auto it = mutable_iterator(hint); it.value() = std::forward(obj); return it; } return insert_or_assign(std::forward(key), std::forward(obj)).first; } template std::pair emplace(Args&&... args) { return insert(value_type(std::forward(args)...)); } template iterator emplace_hint(const_iterator hint, Args&&... args) { return insert(hint, value_type(std::forward(args)...)); } template std::pair try_emplace(K&& key, Args&&... args) { return insert_impl(key, std::piecewise_construct, std::forward_as_tuple(std::forward(key)), std::forward_as_tuple(std::forward(args)...)); } template iterator try_emplace(const_iterator hint, K&& key, Args&&... args) { if(hint != cend() && compare_keys(KeySelect()(*hint), key)) { return mutable_iterator(hint); } return try_emplace(std::forward(key), std::forward(args)...).first; } /** * Here to avoid `template size_type erase(const K& key)` being used when * we use an `iterator` instead of a `const_iterator`. */ iterator erase(iterator pos) { erase_from_bucket(pos); /** * Erase bucket used a backward shift after clearing the bucket. * Check if there is a new value in the bucket, if not get the next non-empty. */ if(pos.m_iterator->empty()) { ++pos; } return pos; } iterator erase(const_iterator pos) { return erase(mutable_iterator(pos)); } iterator erase(const_iterator first, const_iterator last) { if(first == last) { return mutable_iterator(first); } auto first_mutable = mutable_iterator(first); auto last_mutable = mutable_iterator(last); for(auto it = first_mutable.m_iterator; it != last_mutable.m_iterator; ++it) { if(!it->empty()) { it->clear(); m_nb_elements--; } } if(last_mutable == end()) { return end(); } /* * Backward shift on the values which come after the deleted values. * We try to move the values closer to their ideal bucket. */ std::size_t icloser_bucket = std::size_t(std::distance(m_buckets.begin(), first_mutable.m_iterator)); std::size_t ito_move_closer_value = std::size_t(std::distance(m_buckets.begin(), last_mutable.m_iterator)); tsl_assert(ito_move_closer_value > icloser_bucket); const std::size_t ireturn_bucket = ito_move_closer_value - (std::min)(ito_move_closer_value - icloser_bucket, std::size_t(m_buckets[ito_move_closer_value].dist_from_ideal_bucket())); while(ito_move_closer_value < m_buckets.size() && m_buckets[ito_move_closer_value].dist_from_ideal_bucket() > 0) { icloser_bucket = ito_move_closer_value - (std::min)(ito_move_closer_value - icloser_bucket, std::size_t(m_buckets[ito_move_closer_value].dist_from_ideal_bucket())); tsl_assert(m_buckets[icloser_bucket].empty()); const distance_type new_distance = distance_type(m_buckets[ito_move_closer_value].dist_from_ideal_bucket() - (ito_move_closer_value - icloser_bucket)); m_buckets[icloser_bucket].set_value_of_empty_bucket(new_distance, m_buckets[ito_move_closer_value].truncated_hash(), std::move(m_buckets[ito_move_closer_value].value())); m_buckets[ito_move_closer_value].clear(); ++icloser_bucket; ++ito_move_closer_value; } return iterator(m_buckets.begin() + ireturn_bucket); } template size_type erase(const K& key) { return erase(key, hash_key(key)); } template size_type erase(const K& key, std::size_t hash) { auto it = find(key, hash); if(it != end()) { erase_from_bucket(it); return 1; } else { return 0; } } void swap(robin_hash& other) { using std::swap; swap(static_cast(*this), static_cast(other)); swap(static_cast(*this), static_cast(other)); swap(static_cast(*this), static_cast(other)); swap(m_buckets, other.m_buckets); swap(m_first_or_empty_bucket, other.m_first_or_empty_bucket); swap(m_bucket_count, other.m_bucket_count); swap(m_nb_elements, other.m_nb_elements); swap(m_load_threshold, other.m_load_threshold); swap(m_max_load_factor, other.m_max_load_factor); swap(m_grow_on_next_insert, other.m_grow_on_next_insert); } /* * Lookup */ template::value>::type* = nullptr> typename U::value_type& at(const K& key) { return at(key, hash_key(key)); } template::value>::type* = nullptr> typename U::value_type& at(const K& key, std::size_t hash) { return const_cast(static_cast(this)->at(key, hash)); } template::value>::type* = nullptr> const typename U::value_type& at(const K& key) const { return at(key, hash_key(key)); } template::value>::type* = nullptr> const typename U::value_type& at(const K& key, std::size_t hash) const { auto it = find(key, hash); if(it != cend()) { return it.value(); } else { TSL_THROW_OR_TERMINATE(std::out_of_range, "Couldn't find key."); } } template::value>::type* = nullptr> typename U::value_type& operator[](K&& key) { return try_emplace(std::forward(key)).first.value(); } template size_type count(const K& key) const { return count(key, hash_key(key)); } template size_type count(const K& key, std::size_t hash) const { if(find(key, hash) != cend()) { return 1; } else { return 0; } } template iterator find(const K& key) { return find_impl(key, hash_key(key)); } template iterator find(const K& key, std::size_t hash) { return find_impl(key, hash); } template const_iterator find(const K& key) const { return find_impl(key, hash_key(key)); } template const_iterator find(const K& key, std::size_t hash) const { return find_impl(key, hash); } template std::pair equal_range(const K& key) { return equal_range(key, hash_key(key)); } template std::pair equal_range(const K& key, std::size_t hash) { iterator it = find(key, hash); return std::make_pair(it, (it == end())?it:std::next(it)); } template std::pair equal_range(const K& key) const { return equal_range(key, hash_key(key)); } template std::pair equal_range(const K& key, std::size_t hash) const { const_iterator it = find(key, hash); return std::make_pair(it, (it == cend())?it:std::next(it)); } /* * Bucket interface */ size_type bucket_count() const { return m_bucket_count; } size_type max_bucket_count() const { return (std::min)(GrowthPolicy::max_bucket_count(), m_buckets.max_size()); } /* * Hash policy */ float load_factor() const { if(bucket_count() == 0) { return 0; } return float(m_nb_elements)/float(bucket_count()); } float max_load_factor() const { return m_max_load_factor; } void max_load_factor(float ml) { m_max_load_factor = (std::max)(0.1f, (std::min)(ml, 0.95f)); m_load_threshold = size_type(float(bucket_count())*m_max_load_factor); } void rehash(size_type count) { count = (std::max)(count, size_type(std::ceil(float(size())/max_load_factor()))); rehash_impl(count); } void reserve(size_type count) { rehash(size_type(std::ceil(float(count)/max_load_factor()))); } /* * Observers */ hasher hash_function() const { return static_cast(*this); } key_equal key_eq() const { return static_cast(*this); } /* * Other */ iterator mutable_iterator(const_iterator pos) { return iterator(m_buckets.begin() + std::distance(m_buckets.cbegin(), pos.m_iterator)); } private: template std::size_t hash_key(const K& key) const { return Hash::operator()(key); } template bool compare_keys(const K1& key1, const K2& key2) const { return KeyEqual::operator()(key1, key2); } std::size_t bucket_for_hash(std::size_t hash) const { const std::size_t bucket = GrowthPolicy::bucket_for_hash(hash); tsl_assert(bucket < m_buckets.size() || (bucket == 0 && m_buckets.empty())); return bucket; } template::value>::type* = nullptr> std::size_t next_bucket(std::size_t index) const noexcept { tsl_assert(index < bucket_count()); return (index + 1) & this->m_mask; } template::value>::type* = nullptr> std::size_t next_bucket(std::size_t index) const noexcept { tsl_assert(index < bucket_count()); index++; return (index != bucket_count())?index:0; } template iterator find_impl(const K& key, std::size_t hash) { return mutable_iterator(static_cast(this)->find(key, hash)); } template const_iterator find_impl(const K& key, std::size_t hash) const { std::size_t ibucket = bucket_for_hash(hash); distance_type dist_from_ideal_bucket = 0; while(dist_from_ideal_bucket <= (m_first_or_empty_bucket + ibucket)->dist_from_ideal_bucket()) { if(TSL_LIKELY((!USE_STORED_HASH_ON_LOOKUP || (m_first_or_empty_bucket + ibucket)->bucket_hash_equal(hash)) && compare_keys(KeySelect()((m_first_or_empty_bucket + ibucket)->value()), key))) { return const_iterator(m_buckets.begin() + ibucket); } ibucket = next_bucket(ibucket); dist_from_ideal_bucket++; } return cend(); } void erase_from_bucket(iterator pos) { pos.m_iterator->clear(); m_nb_elements--; /** * Backward shift, swap the empty bucket, previous_ibucket, with the values on its right, ibucket, * until we cross another empty bucket or if the other bucket has a distance_from_ideal_bucket == 0. * * We try to move the values closer to their ideal bucket. */ std::size_t previous_ibucket = std::size_t(std::distance(m_buckets.begin(), pos.m_iterator)); std::size_t ibucket = next_bucket(previous_ibucket); while(m_buckets[ibucket].dist_from_ideal_bucket() > 0) { tsl_assert(m_buckets[previous_ibucket].empty()); const distance_type new_distance = distance_type(m_buckets[ibucket].dist_from_ideal_bucket() - 1); m_buckets[previous_ibucket].set_value_of_empty_bucket(new_distance, m_buckets[ibucket].truncated_hash(), std::move(m_buckets[ibucket].value())); m_buckets[ibucket].clear(); previous_ibucket = ibucket; ibucket = next_bucket(ibucket); } } template std::pair insert_impl(const K& key, Args&&... value_type_args) { const std::size_t hash = hash_key(key); std::size_t ibucket = bucket_for_hash(hash); distance_type dist_from_ideal_bucket = 0; while(dist_from_ideal_bucket <= (m_first_or_empty_bucket + ibucket)->dist_from_ideal_bucket()) { if((!USE_STORED_HASH_ON_LOOKUP || (m_first_or_empty_bucket + ibucket)->bucket_hash_equal(hash)) && compare_keys(KeySelect()((m_first_or_empty_bucket + ibucket)->value()), key)) { return std::make_pair(iterator(m_buckets.begin() + ibucket), false); } ibucket = next_bucket(ibucket); dist_from_ideal_bucket++; } if(grow_on_high_load()) { ibucket = bucket_for_hash(hash); dist_from_ideal_bucket = 0; while(dist_from_ideal_bucket <= (m_first_or_empty_bucket + ibucket)->dist_from_ideal_bucket()) { ibucket = next_bucket(ibucket); dist_from_ideal_bucket++; } } if((m_first_or_empty_bucket + ibucket)->empty()) { (m_first_or_empty_bucket + ibucket)->set_value_of_empty_bucket(dist_from_ideal_bucket, bucket_entry::truncate_hash(hash), std::forward(value_type_args)...); } else { insert_value(ibucket, dist_from_ideal_bucket, bucket_entry::truncate_hash(hash), std::forward(value_type_args)...); } m_nb_elements++; /* * The value will be inserted in ibucket in any case, either because it was * empty or by stealing the bucket (robin hood). */ return std::make_pair(iterator(m_buckets.begin() + ibucket), true); } template void insert_value(std::size_t ibucket, distance_type dist_from_ideal_bucket, truncated_hash_type hash, Args&&... value_type_args) { insert_value(ibucket, dist_from_ideal_bucket, hash, value_type(std::forward(value_type_args)...)); } void insert_value(std::size_t ibucket, distance_type dist_from_ideal_bucket, truncated_hash_type hash, value_type&& value) { m_buckets[ibucket].swap_with_value_in_bucket(dist_from_ideal_bucket, hash, value); ibucket = next_bucket(ibucket); dist_from_ideal_bucket++; while(!m_buckets[ibucket].empty()) { if(dist_from_ideal_bucket > m_buckets[ibucket].dist_from_ideal_bucket()) { if(dist_from_ideal_bucket >= REHASH_ON_HIGH_NB_PROBES__NPROBES && load_factor() >= REHASH_ON_HIGH_NB_PROBES__MIN_LOAD_FACTOR) { /** * The number of probes is really high, rehash the map on the next insert. * Difficult to do now as rehash may throw an exception. */ m_grow_on_next_insert = true; } m_buckets[ibucket].swap_with_value_in_bucket(dist_from_ideal_bucket, hash, value); } ibucket = next_bucket(ibucket); dist_from_ideal_bucket++; } m_buckets[ibucket].set_value_of_empty_bucket(dist_from_ideal_bucket, hash, std::move(value)); } void rehash_impl(size_type count) { robin_hash new_table(count, static_cast(*this), static_cast(*this), get_allocator(), m_max_load_factor); const bool use_stored_hash = USE_STORED_HASH_ON_REHASH(new_table.bucket_count()); for(auto& bucket: m_buckets) { if(bucket.empty()) { continue; } const std::size_t hash = use_stored_hash?bucket.truncated_hash(): new_table.hash_key(KeySelect()(bucket.value())); new_table.insert_value_on_rehash(new_table.bucket_for_hash(hash), 0, bucket_entry::truncate_hash(hash), std::move(bucket.value())); } new_table.m_nb_elements = m_nb_elements; new_table.swap(*this); } void insert_value_on_rehash(std::size_t ibucket, distance_type dist_from_ideal_bucket, truncated_hash_type hash, value_type&& value) { while(true) { if(dist_from_ideal_bucket > m_buckets[ibucket].dist_from_ideal_bucket()) { if(m_buckets[ibucket].empty()) { m_buckets[ibucket].set_value_of_empty_bucket(dist_from_ideal_bucket, hash, std::move(value)); return; } else { m_buckets[ibucket].swap_with_value_in_bucket(dist_from_ideal_bucket, hash, value); } } dist_from_ideal_bucket++; ibucket = next_bucket(ibucket); } } /** * Return true if the map has been rehashed. */ bool grow_on_high_load() { if(m_grow_on_next_insert || size() >= m_load_threshold) { rehash_impl(GrowthPolicy::next_bucket_count()); m_grow_on_next_insert = false; return true; } return false; } public: static const size_type DEFAULT_INIT_BUCKETS_SIZE = 16; static constexpr float DEFAULT_MAX_LOAD_FACTOR = 0.5f; private: static const distance_type REHASH_ON_HIGH_NB_PROBES__NPROBES = 128; static constexpr float REHASH_ON_HIGH_NB_PROBES__MIN_LOAD_FACTOR = 0.15f; /** * Return an always valid pointer to an static empty bucket_entry with last_bucket() == true. */ bucket_entry* static_empty_bucket_ptr() { static bucket_entry empty_bucket(true); return &empty_bucket; } private: buckets_container_type m_buckets; /** * Points to m_buckets.data() if !m_buckets.empty() otherwise points to static_empty_bucket_ptr. * This variable is useful to avoid the cost of checking if m_buckets is empty when trying * to find an element. */ bucket_entry* m_first_or_empty_bucket; /** * Used a lot in find, avoid the call to m_buckets.size() which is a bit slower. */ size_type m_bucket_count; size_type m_nb_elements; size_type m_load_threshold; float m_max_load_factor; bool m_grow_on_next_insert; }; } } #endif