# Secret trigonometry ## Hidden Trigonometry functions The versine or versed sine is a trigonometric function found in some of the earliest (Vedic Aryabhatia I) trigonometric tables. The versine of an angle is 1 minus its cosine. There are several related functions, most notably the coversine and haversine. The latter, half a versine, is of particular importance in the haversine formula of navigation (source: Wikipedia) ### vsin(Θ) = 1 - cos(Θ) ![vsin](./assets/vsin.png) ### cvsin(Θ) = 1 - sin(Θ) ![cvsin](./assets/cvsin.png) ### vcos(Θ) = 1 + cos(Θ) ![vcos](./assets/vcos.png) ### cvcos(Θ) = 1 + sin(Θ) ![cvcos](./assets/cvcos.png) ### hvsin(Θ) = (1 - cos(Θ)) / 2 ![hvsin](./assets/hvsin.png) ### hcvsin(Θ) = (1 - sin(Θ)) / 2 ![hcvsin](./assets/hcvsin.png) ### hvcos(Θ) = (1 + cos(Θ)) / 2 ![hvcos](./assets/hvcos.png) ### hcvcos(Θ) = (1 + sin(Θ)) / 2 ![hcvcos](./assets/hcvcos.png) ## Hidden Trigonometry calculus, derivates and integrals ### Examples ```txt derivates --------- d(vsin x) / dx = sin x d(cvsin x) / dx = -cos x integrals --------- ∫ vsin(x) dx = x - sin x + C ∫ cvsin(x) dx = x + cos x + C ```