/* ----------------------------------------------------------------------------- The copyright in this software is being made available under the Clear BSD License, included below. No patent rights, trademark rights and/or other Intellectual Property Rights other than the copyrights concerning the Software are granted under this license. The Clear BSD License Copyright (c) 2018-2023, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. & The VVdeC Authors. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted (subject to the limitations in the disclaimer below) provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ------------------------------------------------------------------------------------------- */ /** \file CodingStructure.h * \brief A class managing the coding information for a specific image part */ #pragma once #include "Unit.h" #include "Buffer.h" #include "CommonDef.h" #include "UnitPartitioner.h" #include "Slice.h" #include namespace vvdec { struct Picture; enum PictureType { PIC_RECONSTRUCTION, PIC_RECON_WRAP, NUM_PIC_TYPES }; #define NUM_PARTS_IN_CTU ( MAX_CU_SIZE * MAX_CU_SIZE ) >> ( MIN_CU_LOG2 << 1 ) // num collocated motion #define NUM_COMOT_IN_CTU ( MAX_CU_SIZE * MAX_CU_SIZE ) >> ( ( MIN_CU_LOG2 + 1 ) << 1 ) struct CtuAlfData { uint8_t ccAlfFilterControl[MAX_NUM_COMPONENT - 1]; uint8_t alfCtuEnableFlag [MAX_NUM_COMPONENT]; uint8_t alfCtuAlternative [MAX_NUM_COMPONENT - 1]; short alfCtbFilterIndex; CtuAlfData() : ccAlfFilterControl{ 0, 0 }, alfCtuEnableFlag{ 0, 0, 0 } {} }; struct CtuData { SAOBlkParam saoParam; CtuAlfData alfParam; const Slice* slice; const PPS* pps; const SPS* sps; const PicHeader* ph; int lineIdx, colIdx, ctuIdx; CodingUnit *firstCU, *lastCU; unsigned numCUs, numTUs; ptrdiff_t predBufOffset; ptrdiff_t dmvrMvCacheOffset; CodingUnit** cuPtr [MAX_NUM_CHANNEL_TYPE]; LoopFilterParam* lfParam[NUM_EDGE_DIR]; MotionInfo* motion; ColocatedMotionInfo* colMotion; }; // --------------------------------------------------------------------------- // coding structure // --------------------------------------------------------------------------- class CodingStructure { public: UnitArea area; Picture *picture; UnitScale unitScale[MAX_NUM_COMPONENT]; int chromaQpAdj; std::shared_ptr vps; std::shared_ptr sps; std::shared_ptr pps; std::shared_ptr picHeader; std::shared_ptr alfApss[ALF_CTB_MAX_NUM_APS]; std::shared_ptr lmcsAps; const PreCalcValues* pcv; // data for which memory is partially borrowed from DecLibRecon CtuData* m_ctuData; size_t m_ctuDataSize; Pel* m_predBuf; Mv* m_dmvrMvCache; // end of partially borrowed data CodingStructure( CUChunkCache* cuChunkCache, TUChunkCache* tuChunkCache ); void create(const UnitArea &_unit); void create(const ChromaFormat &_chromaFormat, const Area& _area); void destroy(); void resetForUse(); void rebindPicBufs(); // --------------------------------------------------------------------------- // global accessors // --------------------------------------------------------------------------- #if _DEBUG const CodingUnit* getCU(Position pos, ChannelType _chType) const { if( area.blocks[_chType].contains( pos ) ) { int rsAddr = ctuRsAddr( pos, _chType ); int inCtu = inCtuPos ( pos, _chType ); return getCtuData( rsAddr ).cuPtr[_chType][inCtu]; } else return nullptr; } CodingUnit* getCU(Position pos, ChannelType _chType) { if( area.blocks[_chType].contains( pos ) ) { int rsAddr = ctuRsAddr( pos, _chType ); int inCtu = inCtuPos ( pos, _chType ); return getCtuData( rsAddr ).cuPtr[_chType][inCtu]; } else return nullptr; } #else const CodingUnit* getCU(Position pos, ChannelType _chType) const { if( area.blocks[_chType].contains( pos ) ) return getCtuData( ctuRsAddr( pos, _chType ) ).cuPtr[_chType][inCtuPos( pos, _chType )]; else return nullptr; } CodingUnit* getCU(Position pos, ChannelType _chType) { if( area.blocks[_chType].contains( pos ) ) return getCtuData( ctuRsAddr( pos, _chType ) ).cuPtr[_chType][inCtuPos( pos, _chType )]; else return nullptr; } #endif const CodingUnit* getCURestricted(const Position &pos, const Position curPos, const unsigned curSliceIdx, const unsigned curTileIdx, const ChannelType _chType) const; const CodingUnit* getCURestricted(const Position &pos, const CodingUnit& curCu, const ChannelType _chType, const CodingUnit* guess = nullptr) const; CodingUnit& addCU(const UnitArea &unit, const ChannelType _chType, const TreeType treeType, const ModeType modeType, const CodingUnit* cuLeft, const CodingUnit* cuAbove ); TransformUnit& addTU(const UnitArea &unit, const ChannelType _chType, CodingUnit &cu); void addEmptyTUs(Partitioner &partitioner, CodingUnit& cu); CUTraverser traverseCUs(const int ctuRsAddr); void initStructData(); void allocTempInternals(); void deallocTempInternals(); void createInternals(const UnitArea& _unit); CUCache m_cuCache; TUCache m_tuCache; PelStorage m_reco; PelStorage m_rec_wrap; unsigned int m_widthInCtus; PosType m_ctuSizeMask[2]; PosType m_ctuWidthLog2[2]; CodingUnit** m_cuMap; ptrdiff_t m_cuMapSize; ColocatedMotionInfo* m_colMiMap; ptrdiff_t m_colMiMapSize; public: // in CTU coordinates int ctuRsAddr( int col, int line ) const { return col + ( line * m_widthInCtus ); } // in sample coordinates int ctuRsAddr( Position pos, ChannelType chType ) const { Position posL = recalcPosition( area.chromaFormat, chType, CH_L, pos ); return ctuRsAddr( posL.x >> pcv->maxCUWidthLog2, posL.y >> pcv->maxCUHeightLog2 ); } // 4x4 luma block position within the CTU int inCtuPos ( Position pos, ChannelType chType ) const { return ( unitScale[chType].scaleHor( pos.x ) & m_ctuSizeMask[chType] ) + ( ( unitScale[chType].scaleVer( pos.y ) & m_ctuSizeMask[chType] ) << m_ctuWidthLog2[chType] ); } // 8x8 luma block position within the CTU int colMotPos( Position pos ) const { return ( g_colMiScaling.scaleHor( pos.x ) & ( m_ctuSizeMask[CH_L] >> 1 ) ) + ( ( g_colMiScaling.scaleVer( pos.y ) & ( m_ctuSizeMask[CH_L] >> 1 ) ) << ( m_ctuWidthLog2[CH_L] - 1 ) ); } CtuData& getCtuData( int col, int line ) { return m_ctuData[ctuRsAddr( col, line )]; } const CtuData& getCtuData( int col, int line ) const { return m_ctuData[ctuRsAddr( col, line )]; } CtuData& getCtuData( int addr ) { return m_ctuData[addr]; } const CtuData& getCtuData( int addr ) const { return m_ctuData[addr]; } int m_IBCBufferWidth; std::vector m_virtualIBCbuf; std::vector hasIbcBlock; void initVIbcBuf( int numCtuLines, ChromaFormat chromaFormatIDC, int ctuSize ); void fillIBCbuffer( CodingUnit &cu, int lineIdx ); MotionBuf getMotionBuf( const Area& _area ); MotionBuf getMotionBuf( const UnitArea& _area ) { return getMotionBuf( _area.Y() ); } const CMotionBuf getMotionBuf( const Area& _area ) const; const CMotionBuf getMotionBuf( const UnitArea& _area ) const { return getMotionBuf( _area.Y() ); } MotionInfo& getMotionInfo( const Position& pos ) { return getCtuData( ctuRsAddr( pos, CH_L ) ).motion[inCtuPos( pos, CH_L )]; } const MotionInfo& getMotionInfo( const Position& pos ) const { return getCtuData( ctuRsAddr( pos, CH_L ) ).motion[inCtuPos( pos, CH_L )]; } const ColocatedMotionInfo& getColInfo( const Position &pos, const Slice*& pColSlice ) const; LoopFilterParam const* getLFPMapPtr ( const DeblockEdgeDir edgeDir, ptrdiff_t _ctuRsAddr ) const { return m_ctuData[_ctuRsAddr].lfParam[edgeDir]; } LoopFilterParam * getLFPMapPtr ( const DeblockEdgeDir edgeDir, ptrdiff_t _ctuRsAddr ) { return m_ctuData[_ctuRsAddr].lfParam[edgeDir]; } ptrdiff_t get4x4MapStride() const { return ( ptrdiff_t( 1 ) << m_ctuWidthLog2[CH_L] ); } UnitScale getScaling( const UnitScale::ScaliningType type, const ChannelType chType = CH_L ) const { return type == UnitScale::MI_MAP ? g_miScaling : unitScale[chType]; } public: PelBuf getRecoBuf(const CompArea &blk) { return m_reco.bufs[blk.compID()].subBuf( blk ); } const CPelBuf getRecoBuf(const CompArea &blk) const { return m_reco.bufs[blk.compID()].subBuf( blk ); } PelUnitBuf getRecoBuf(const UnitArea &unit) { return m_reco.subBuf( unit ); } const CPelUnitBuf getRecoBuf(const UnitArea &unit) const { return m_reco.subBuf( unit ); } // reco buffer PelBuf getRecoBuf(const ComponentID compID, bool wrap=false) { return wrap ? m_rec_wrap.get(compID) : m_reco.get(compID); } const CPelBuf getRecoBuf(const ComponentID compID, bool wrap=false) const { return wrap ? m_rec_wrap.get(compID) : m_reco.get(compID); } PelUnitBuf getRecoBuf(bool wrap=false) { return wrap ? m_rec_wrap : m_reco; } const CPelUnitBuf getRecoBuf(bool wrap=false) const { return wrap ? m_rec_wrap : m_reco; } PelUnitBuf getPredBuf(const CodingUnit &cu); const CPelUnitBuf getPredBuf(const CodingUnit &cu) const; }; }