/* ----------------------------------------------------------------------------- The copyright in this software is being made available under the Clear BSD License, included below. No patent rights, trademark rights and/or other Intellectual Property Rights other than the copyrights concerning the Software are granted under this license. The Clear BSD License Copyright (c) 2018-2023, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. & The VVdeC Authors. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted (subject to the limitations in the disclaimer below) provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ------------------------------------------------------------------------------------------- */ /** \file ContextModelling.cpp \brief Classes providing probability descriptions and contexts */ #include "ContextModelling.h" #include "UnitTools.h" #include "CodingStructure.h" #include "Picture.h" namespace vvdec { static const int prefix_ctx[8] = { 0, 0, 0, 3, 6, 10, 15, 21 }; CoeffCodingContext::CoeffCodingContext( const TransformUnit& tu, ComponentID component, bool signHide, CtxTpl* tplBuf ) : m_chType (toChannelType(component)) , m_width (tu.block(component).width) , m_height (tu.block(component).height) , m_log2CGWidth ( g_log2SbbSize[ getLog2(m_width) ][ getLog2(m_height) ][0] ) , m_log2CGHeight ( g_log2SbbSize[ getLog2(m_width) ][ getLog2(m_height) ][1] ) , m_log2CGSize (m_log2CGWidth + m_log2CGHeight) , m_widthInGroups (std::min(JVET_C0024_ZERO_OUT_TH, m_width ) >> m_log2CGWidth ) , m_heightInGroups (std::min(JVET_C0024_ZERO_OUT_TH, m_height) >> m_log2CGHeight) , m_log2BlockWidth (getLog2(m_width )) , m_log2BlockHeight (getLog2(m_height)) , m_log2BlockSize ((m_log2BlockWidth + m_log2BlockHeight)>>1) , m_maxNumCoeff (m_width * m_height) , m_signHiding (signHide) , m_maxLog2TrDynamicRange (tu.cu->sps->getMaxLog2TrDynamicRange(m_chType)) , m_scan (g_scanOrder [SCAN_GROUPED_4x4][g_sizeIdxInfo.idxFrom(m_width )][g_sizeIdxInfo.idxFrom(m_height )]) , m_scanCG (g_scanOrder [SCAN_UNGROUPED ][g_sizeIdxInfo.idxFrom(m_widthInGroups)][g_sizeIdxInfo.idxFrom(m_heightInGroups)]) , m_CtxSetLastX (Ctx::LastX[m_chType]) , m_CtxSetLastY (Ctx::LastY[m_chType]) , m_maxLastPosX (g_uiGroupIdx[std::min(JVET_C0024_ZERO_OUT_TH, m_width) - 1]) , m_maxLastPosY (g_uiGroupIdx[std::min(JVET_C0024_ZERO_OUT_TH, m_height) - 1]) , m_lastOffsetX (isLuma( m_chType ) ? prefix_ctx[ m_log2BlockWidth ] : 0) , m_lastOffsetY (isLuma( m_chType ) ? prefix_ctx[ m_log2BlockHeight ] : 0) , m_lastShiftX (isChroma( m_chType ) ? Clip3( 0, 2, int( m_width >> 3 ) ) : (m_log2BlockWidth + 1) >> 2 ) , m_lastShiftY (isChroma( m_chType ) ? Clip3( 0, 2, int( m_height >> 3 ) ) : (m_log2BlockHeight + 1) >> 2 ) , m_scanPosLast (-1) , m_subSetId (-1) , m_subSetPos (-1) , m_subSetPosX (-1) , m_subSetPosY (-1) , m_minSubPos (-1) , m_maxSubPos (-1) , m_sigGroupCtxId (-1) , m_tmplCpSum1 (-1) , m_tmplCpDiag (-1) , m_sigFlagCtxSet { Ctx::SigFlag[m_chType], Ctx::SigFlag[m_chType+2], Ctx::SigFlag[m_chType+4] } , m_parFlagCtxSet ( Ctx::ParFlag[m_chType] ) , m_gtxFlagCtxSet { Ctx::GtxFlag[m_chType], Ctx::GtxFlag[m_chType+2] } , m_sigGroupCtxIdTS (-1) , m_tsSigFlagCtxSet ( Ctx::TsSigFlag ) , m_tsParFlagCtxSet ( Ctx::TsParFlag ) , m_tsGtxFlagCtxSet ( Ctx::TsGtxFlag ) , m_tsLrg1FlagCtxSet (Ctx::TsLrg1Flag) , m_tsSignFlagCtxSet (Ctx::TsResidualSign) , m_sigCoeffGroupFlag () , m_bdpcm (isLuma(component) ? tu.cu->bdpcmMode() : tu.cu->bdpcmModeChroma()) , m_regBinLimit ( ( TU::getTbAreaAfterCoefZeroOut( tu, component ) * ( isLuma( component ) ? MAX_TU_LEVEL_CTX_CODED_BIN_CONSTRAINT_LUMA : MAX_TU_LEVEL_CTX_CODED_BIN_CONSTRAINT_CHROMA ) ) >> 4 ) , m_ts (tu.mtsIdx( component ) == MTS_SKIP) , m_tplBuf (tplBuf) { if( !m_ts || tu.cu->slice->getTSResidualCodingDisabledFlag() ) memset( tplBuf, 0, m_width * m_height * sizeof( CtxTpl ) ); } void CoeffCodingContext::initSubblock( int SubsetId, bool sigGroupFlag ) { m_subSetId = SubsetId; m_subSetPos = m_scanCG[ m_subSetId ]; m_subSetPosY = m_subSetPos >> getLog2( m_widthInGroups ); m_subSetPosX = m_subSetPos - ( m_subSetPosY * m_widthInGroups ); m_minSubPos = m_subSetId << m_log2CGSize; m_maxSubPos = m_minSubPos + ( 1 << m_log2CGSize ) - 1; const bool lastHorGrp = m_subSetPosX == m_widthInGroups - 1; const bool lastVerGrp = m_subSetPosY == m_heightInGroups - 1; if( sigGroupFlag ) { m_sigCoeffGroupFlag.set ( m_subSetPos ); } unsigned CGPosY = m_subSetPosY; unsigned CGPosX = m_subSetPosX; unsigned sigRight = unsigned( !lastHorGrp ? m_sigCoeffGroupFlag[ m_subSetPos + 1 ] : false ); unsigned sigLower = unsigned( !lastVerGrp ? m_sigCoeffGroupFlag[ m_subSetPos + m_widthInGroups ] : false ); m_sigGroupCtxId = Ctx::SigCoeffGroup[m_chType]( sigRight | sigLower ); if( m_ts ) { unsigned sigLeft = unsigned( CGPosX > 0 ? m_sigCoeffGroupFlag[m_subSetPos - 1 ] : false ); unsigned sigAbove = unsigned( CGPosY > 0 ? m_sigCoeffGroupFlag[m_subSetPos - m_widthInGroups] : false ); m_sigGroupCtxIdTS = Ctx::TsSigCoeffGroup( sigLeft + sigAbove ); } } unsigned DeriveCtx::CtxModeConsFlag( const CodingStructure& cs, Partitioner& partitioner ) { CHECKD( partitioner.chType != CHANNEL_TYPE_LUMA, "Channel type has to be luma" ); const CodingUnit* cuLeft = partitioner.currPartLevel().cuLeft; const CodingUnit* cuAbove = partitioner.currPartLevel().cuAbove; unsigned ctxId = ( ( cuAbove && cuAbove->predMode() == MODE_INTRA ) || ( cuLeft && cuLeft->predMode() == MODE_INTRA ) ) ? 1 : 0; return ctxId; } void DeriveCtx::CtxSplit( const CodingStructure& cs, Partitioner& partitioner, unsigned& ctxSpl, unsigned& ctxQt, unsigned& ctxHv, unsigned& ctxHorBt, unsigned& ctxVerBt, bool *canSplit /*= nullptr */ ) { // get left depth const CodingUnit* cuLeft = partitioner.currPartLevel().cuLeft; // get above depth const CodingUnit* cuAbove = partitioner.currPartLevel().cuAbove; /////////////////////// // CTX do split (0-8) /////////////////////// const unsigned widthCurr = partitioner.currArea().blocks[partitioner.chType].width; const unsigned heightCurr = partitioner.currArea().blocks[partitioner.chType].height; ctxSpl = !!( cuLeft && cuLeft ->blocks[partitioner.chType].height < heightCurr ); ctxSpl += !!( cuAbove && cuAbove->blocks[partitioner.chType].width < widthCurr ); unsigned numSplit = canSplit[1] ? 2 : 0; numSplit += canSplit[2]; numSplit += canSplit[3]; numSplit += canSplit[4]; numSplit += canSplit[5]; if( numSplit > 0 ) numSplit--; ctxSpl += 3 * ( numSplit >> 1 ); ////////////////////////// // CTX is qt split (0-5) ////////////////////////// ctxQt = !!( cuLeft && cuLeft->qtDepth > partitioner.currQtDepth ); ctxQt += !!( cuAbove && cuAbove->qtDepth > partitioner.currQtDepth ); ctxQt += partitioner.currQtDepth < 2 ? 0 : 3; //////////////////////////// // CTX is ver split (0-4) //////////////////////////// ctxHv = 0; const unsigned numHor = ( !!canSplit[2] ) + ( !!canSplit[4] ); const unsigned numVer = ( !!canSplit[3] ) + ( !!canSplit[5] ); if( numVer == numHor ) { const unsigned wIdxAbove = cuAbove ? getLog2( cuAbove->blocks[partitioner.chType].width ) : 0; const unsigned hIdxLeft = cuLeft ? getLog2( cuLeft ->blocks[partitioner.chType].height ) : 0; const unsigned depAbove = widthCurr >> wIdxAbove; const unsigned depLeft = heightCurr >> hIdxLeft; if( depAbove == depLeft || !cuLeft || !cuAbove ) ctxHv = 0; else if( depAbove < depLeft ) ctxHv = 1; else ctxHv = 2; } else if( numVer < numHor ) { ctxHv = 3; } else { ctxHv = 4; } ////////////////////////// // CTX is h/v bt (0-3) ////////////////////////// ctxHorBt = !!( partitioner.currMtDepth <= 1 ); ctxVerBt = !!( partitioner.currMtDepth <= 1 ) + 2; } unsigned DeriveCtx::CtxQtCbf( const ComponentID compID, const bool prevCbCbf, const int ispIdx ) { if( ispIdx && isLuma( compID ) ) { return 2 + ( int ) prevCbCbf; } if( compID == COMPONENT_Cr ) { return ( prevCbCbf ? 1 : 0 ); } return 0; } unsigned DeriveCtx::CtxInterDir( const CodingUnit& cu ) { { return ( 7 - ( ( getLog2( cu.lumaSize().width ) + getLog2( cu.lumaSize().height ) + 1 ) >> 1 ) ); } return cu.qtDepth; } unsigned DeriveCtx::CtxAffineFlag( const CodingUnit& cu ) { unsigned ctxId = 0; const CodingUnit *cuLeft = cu.left; ctxId = ( cuLeft && cuLeft ->affineFlag() ) ? 1 : 0; const CodingUnit *cuAbove = cu.above; ctxId += ( cuAbove && cuAbove->affineFlag() ) ? 1 : 0; return ctxId; } unsigned DeriveCtx::CtxSkipFlag( const CodingUnit& cu ) { unsigned ctxId = 0; // Get BCBP of left PU const CodingUnit *cuLeft = cu.left; ctxId = ( cuLeft && cuLeft->skip() ) ? 1 : 0; // Get BCBP of above PU const CodingUnit *cuAbove = cu.above; ctxId += ( cuAbove && cuAbove->skip() ) ? 1 : 0; return ctxId; } unsigned DeriveCtx::CtxPredModeFlag( const CodingUnit& cu ) { const CodingUnit *cuLeft = cu.left; const CodingUnit *cuAbove = cu.above; unsigned ctxId = ( ( cuAbove && cuAbove->predMode() == MODE_INTRA ) || ( cuLeft && cuLeft->predMode() == MODE_INTRA ) ) ? 1 : 0; return ctxId; } unsigned DeriveCtx::CtxIBCFlag( const CodingUnit& cu ) { unsigned ctxId = 0; const CodingUnit *cuLeft = cu.left; ctxId += ( cuLeft && CU::isIBC( *cuLeft ) ) ? 1 : 0; const CodingUnit *cuAbove = cu.above; ctxId += ( cuAbove && CU::isIBC( *cuAbove ) ) ? 1 : 0; return ctxId; } void MergeCtx::setMergeInfo( CodingUnit& cu, int candIdx ) { CHECK_RECOVERABLE( candIdx >= numValidMergeCand, "Merge candidate does not exist" ); //cu.setMergeFlag ( true ); //cu.setMmvdFlag ( false ); cu.setInterDir ( interDirNeighbours[candIdx] ); cu.setImv ( ( !cu.geoFlag() && useAltHpelIf[candIdx] ) ? IMV_HPEL : 0 ); //cu.setMergeIdx ( candIdx ); cu.setMergeType ( mrgTypeNeighbours[candIdx] ); cu.mv [REF_PIC_LIST_0][0] = mvFieldNeighbours[(candIdx << 1) + 0].mv; cu.mv [REF_PIC_LIST_1][0] = mvFieldNeighbours[(candIdx << 1) + 1].mv; cu.refIdx [REF_PIC_LIST_0] = mvFieldNeighbours[( candIdx << 1 ) + 0].mfRefIdx; cu.refIdx [REF_PIC_LIST_1] = mvFieldNeighbours[( candIdx << 1 ) + 1].mfRefIdx; cu.mvpIdx [REF_PIC_LIST_0] = NOT_VALID; cu.mvpIdx [REF_PIC_LIST_1] = NOT_VALID; cu.setBcwIdx ( ( interDirNeighbours[candIdx] == 3 ) ? BcwIdx[candIdx] : BCW_DEFAULT ); PU::restrictBiPredMergeCandsOne( cu ); } void MergeCtx::setMmvdMergeCandiInfo( CodingUnit& cu, int candIdx ) { const Slice &slice = *cu.slice; const int mvShift = MV_FRACTIONAL_BITS_DIFF; const int refMvdCands[8] = { 1 << mvShift , 2 << mvShift , 4 << mvShift , 8 << mvShift , 16 << mvShift , 32 << mvShift, 64 << mvShift , 128 << mvShift }; int fPosGroup = 0; int fPosBaseIdx = 0; int fPosStep = 0; int tempIdx = 0; int fPosPosition = 0; Mv tempMv[2]; tempIdx = candIdx; fPosGroup = tempIdx / (MMVD_BASE_MV_NUM * MMVD_MAX_REFINE_NUM); tempIdx = tempIdx - fPosGroup * (MMVD_BASE_MV_NUM * MMVD_MAX_REFINE_NUM); fPosBaseIdx = tempIdx / MMVD_MAX_REFINE_NUM; tempIdx = tempIdx - fPosBaseIdx * (MMVD_MAX_REFINE_NUM); fPosStep = tempIdx / 4; fPosPosition = tempIdx - fPosStep * (4); int offset = refMvdCands[fPosStep]; if( cu.slice->getPicHeader()->getDisFracMMVD() ) { offset <<= 2; } const int refList0 = mmvdBaseMv[fPosBaseIdx][0].mfRefIdx; const int refList1 = mmvdBaseMv[fPosBaseIdx][1].mfRefIdx; if( ( refList0 != -1 ) && ( refList1 != -1 ) ) { const int poc0 = slice.getRefPOC(REF_PIC_LIST_0, refList0); const int poc1 = slice.getRefPOC(REF_PIC_LIST_1, refList1); const int currPoc = slice.getPOC(); if( fPosPosition == 0 ) { tempMv[0] = Mv( offset, 0 ); } else if( fPosPosition == 1 ) { tempMv[0] = Mv( -offset, 0 ); } else if( fPosPosition == 2 ) { tempMv[0] = Mv( 0, offset ); } else { tempMv[0] = Mv( 0, -offset ); } if( ( poc0 - currPoc ) == ( poc1 - currPoc ) ) { tempMv[1] = tempMv[0]; } else if( abs( poc1 - currPoc ) > abs( poc0 - currPoc ) ) { tempMv[1] = tempMv[0]; const int scale = PU::getDistScaleFactor( currPoc, poc0, currPoc, poc1 ); const bool isL0RefLongTerm = cu.slice->getRPL( REF_PIC_LIST_1 )->isRefPicLongterm( refList0 ); const bool isL1RefLongTerm = cu.slice->getRPL( REF_PIC_LIST_0 )->isRefPicLongterm( refList1 ); if( isL0RefLongTerm || isL1RefLongTerm ) { if( ( poc1 - currPoc ) * ( poc0 - currPoc ) > 0 ) { tempMv[0] = tempMv[1]; } else { tempMv[0].set( -1 * tempMv[1].getHor(), -1 * tempMv[1].getVer() ); } } else tempMv[0] = tempMv[1].scaleMv( scale ); } else { const int scale = PU::getDistScaleFactor( currPoc, poc1, currPoc, poc0 ); const bool isL0RefLongTerm = cu.slice->getRPL( REF_PIC_LIST_0 )->isRefPicLongterm( refList0 ); const bool isL1RefLongTerm = cu.slice->getRPL( REF_PIC_LIST_1 )->isRefPicLongterm( refList1 ); if( isL0RefLongTerm || isL1RefLongTerm ) { if( ( poc1 - currPoc ) * ( poc0 - currPoc ) > 0 ) { tempMv[1] = tempMv[0]; } else { tempMv[1].set( -1 * tempMv[0].getHor(), -1 * tempMv[0].getVer() ); } } else tempMv[1] = tempMv[0].scaleMv( scale ); } cu.setInterDir ( 3 ); cu.mv [L0][0] = mmvdBaseMv[fPosBaseIdx][0].mv + tempMv[0]; cu.refIdx[L0] = refList0; cu.mv [L1][0] = mmvdBaseMv[fPosBaseIdx][1].mv + tempMv[1]; cu.refIdx[L1] = refList1; } else if( refList0 != -1 ) { if( fPosPosition == 0 ) { tempMv[0] = Mv( offset, 0 ); } else if( fPosPosition == 1 ) { tempMv[0] = Mv( -offset, 0 ); } else if( fPosPosition == 2 ) { tempMv[0] = Mv( 0, offset ); } else { tempMv[0] = Mv( 0, -offset ); } cu.setInterDir ( 1 ); cu.mv [L0][0] = mmvdBaseMv[fPosBaseIdx][0].mv + tempMv[0]; cu.refIdx[L0] = refList0; cu.mv [L1][0] = Mv(0, 0); cu.refIdx[L1] = NOT_VALID; } else if( refList1 != -1 ) { if( fPosPosition == 0 ) { tempMv[1] = Mv( offset, 0 ); } else if( fPosPosition == 1 ) { tempMv[1] = Mv( -offset, 0 ); } else if( fPosPosition == 2 ) { tempMv[1] = Mv( 0, offset ); } else { tempMv[1] = Mv( 0, -offset ); } cu.setInterDir ( 2 ); cu.mv [REF_PIC_LIST_0][0] = Mv(0, 0); cu.refIdx[REF_PIC_LIST_0] = NOT_VALID; cu.mv [REF_PIC_LIST_1][0] = mmvdBaseMv[fPosBaseIdx][1].mv + tempMv[1]; cu.refIdx[REF_PIC_LIST_1] = refList1; } //cu.setMmvdFlag ( true ); cu.mmvdIdx = candIdx; //cu.setMergeFlag ( true ); //cu.setMergeIdx ( candIdx ); //cu.setMergeType ( MRG_TYPE_DEFAULT_N ); cu.mvpIdx [L0] = NOT_VALID; cu.mvpIdx [L1] = NOT_VALID; cu.setImv ( mmvdUseAltHpelIf[fPosBaseIdx] ? IMV_HPEL : 0 ); cu.setBcwIdx ( ( interDirNeighbours[fPosBaseIdx] == 3 ) ? BcwIdx[fPosBaseIdx] : BCW_DEFAULT ); for( int refList = 0; refList < 2; refList++ ) { if( cu.refIdx[refList] >= 0 ) { cu.mv[refList][0].clipToStorageBitDepth(); } } PU::restrictBiPredMergeCandsOne( cu ); } unsigned DeriveCtx::CtxMipFlag( const CodingUnit& cu ) { unsigned ctxId = 0; const CodingUnit *cuLeft = cu.left; ctxId = ( cuLeft && cuLeft->mipFlag() ) ? 1 : 0; const CodingUnit *cuAbove = cu.above; ctxId += ( cuAbove && cuAbove->mipFlag() ) ? 1 : 0; ctxId = ( cu.lwidth() > 2 * cu.lheight() || cu.lheight() > 2 * cu.lwidth() ) ? 3 : ctxId; return ctxId; } }