/* ----------------------------------------------------------------------------- The copyright in this software is being made available under the Clear BSD License, included below. No patent rights, trademark rights and/or other Intellectual Property Rights other than the copyrights concerning the Software are granted under this license. The Clear BSD License Copyright (c) 2018-2023, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. & The VVdeC Authors. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted (subject to the limitations in the disclaimer below) provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ------------------------------------------------------------------------------------------- */ /** \file MatrixIntraPrediction.cpp \brief matrix-based intra prediction class */ #include "MatrixIntraPrediction.h" #include "dtrace_next.h" #include "UnitTools.h" #include "MipData.h" namespace vvdec { namespace Mip { PredictorMIP::PredictorMIP(): m_blockSize( 0, 0 ), m_sizeId( 0 ), m_reducedBdrySize( 0 ), m_reducedPredSize( 0 ), m_upsmpFactorHor( 0 ), m_upsmpFactorVer( 0 ) { } void PredictorMIP::deriveBoundaryData(const CPelBuf& src, const Area& block, const int bitDepth) { // Step 1: Save block size and calculate dependent values initPredBlockParams(block); // Step 2: Get the input data (left and top reference samples) // m_refSamplesTop.resize(block.width); for (int x = 0; x < block.width; x++) { m_refSamplesTop[x] = src.at(x + 1, 0); } // m_refSamplesLeft.resize(block.height); for (int y = 0; y < block.height; y++) { m_refSamplesLeft[y] = src.at(0, y + 1); } // Step 3: Compute the reduced boundary via Haar-downsampling (input for the prediction) // m_reducedBoundary .resize( m_reducedBoundarySize.width + m_reducedBoundarySize.height ); // m_reducedBoundaryTransposed.resize( m_reducedBoundarySize.width + m_reducedBoundarySize.height ); // m_reducedBoundary .resize( inputSize ); // m_reducedBoundaryTransposed.resize( inputSize ); Pel* const topReduced = m_reducedBoundary; boundaryDownsampling1D( topReduced, m_refSamplesTop, block.width, m_reducedBdrySize ); Pel* const leftReduced = m_reducedBoundary + m_reducedBdrySize; boundaryDownsampling1D( leftReduced, m_refSamplesLeft, block.height, m_reducedBdrySize ); Pel* const leftReducedTransposed = m_reducedBoundaryTransposed; Pel* const topReducedTransposed = m_reducedBoundaryTransposed + m_reducedBdrySize; for( int x = 0; x < m_reducedBdrySize; x++ ) { topReducedTransposed[x] = topReduced[x]; } for( int y = 0; y < m_reducedBdrySize; y++ ) { leftReducedTransposed[y] = leftReduced[y]; } // Step 4: Rebase the reduced boundary const int inputSize = 2 * m_reducedBdrySize; m_inputOffset = m_reducedBoundary[0]; m_inputOffsetTransp = m_reducedBoundaryTransposed[0]; const bool hasFirstCol = (m_sizeId < 2); m_reducedBoundary [0] = hasFirstCol ? ((1 << (bitDepth - 1)) - m_inputOffset ) : 0; // first column of matrix not needed for large blocks m_reducedBoundaryTransposed[0] = hasFirstCol ? ((1 << (bitDepth - 1)) - m_inputOffsetTransp) : 0; for (int i = 1; i < inputSize; i++) { m_reducedBoundary [i] -= m_inputOffset; m_reducedBoundaryTransposed[i] -= m_inputOffsetTransp; } } void PredictorMIP::getPrediction(Pel* const result, const int modeIdx, const bool transpose, const int bitDepth) { const bool needUpsampling = ( m_upsmpFactorHor > 1 ) || ( m_upsmpFactorVer > 1 ); const uint8_t* matrix = getMatrixData(modeIdx); Pel bufReducedPred[MIP_MAX_REDUCED_OUTPUT_SAMPLES]; Pel* const reducedPred = needUpsampling ? bufReducedPred : result; const Pel* const reducedBoundary = transpose ? m_reducedBoundaryTransposed : m_reducedBoundary; computeReducedPred( reducedPred, reducedBoundary, matrix, transpose, bitDepth ); if( needUpsampling ) { predictionUpsampling( result, reducedPred ); } } void PredictorMIP::initPredBlockParams(const Size& block) { m_blockSize = block; // init size index m_sizeId = getMipSizeId( m_blockSize ); // init reduced boundary size m_reducedBdrySize = (m_sizeId == 0) ? 2 : 4; // init reduced prediction size m_reducedPredSize = ( m_sizeId < 2 ) ? 4 : 8; // init upsampling factors m_upsmpFactorHor = m_blockSize.width / m_reducedPredSize; m_upsmpFactorVer = m_blockSize.height / m_reducedPredSize; CHECKD( (m_upsmpFactorHor < 1) || ((m_upsmpFactorHor & (m_upsmpFactorHor - 1)) != 0), "Need power of two horizontal upsampling factor." ); CHECKD( (m_upsmpFactorVer < 1) || ((m_upsmpFactorVer & (m_upsmpFactorVer - 1)) != 0), "Need power of two vertical upsampling factor." ); } void PredictorMIP::boundaryDownsampling1D(Pel* reducedDst, const Pel* const fullSrc, const SizeType srcLen, const SizeType dstLen) { if (dstLen < srcLen) { // Create reduced boundary by downsampling const SizeType downsmpFactor = srcLen / dstLen; const int log2DownsmpFactor = getLog2(downsmpFactor); const int roundingOffset = (1 << (log2DownsmpFactor - 1)); SizeType srcIdx = 0; for( SizeType dstIdx = 0; dstIdx < dstLen; dstIdx++ ) { int sum = 0; for( int k = 0; k < downsmpFactor; k++ ) { sum += fullSrc[srcIdx++]; } reducedDst[dstIdx] = (sum + roundingOffset) >> log2DownsmpFactor; } } else { memcpy( reducedDst, fullSrc, dstLen * sizeof( Pel ) ); } } void PredictorMIP::predictionUpsampling1D( Pel* const dst, const Pel* const src, const Pel* const bndry, const SizeType srcSizeUpsmpDim, const SizeType srcSizeOrthDim, const SizeType srcStep, const SizeType srcStride, const SizeType dstStep, const SizeType dstStride, const SizeType bndryStep, const unsigned int upsmpFactor ) { const Pel log2UpsmpFactor = getLog2( upsmpFactor ); CHECKD( upsmpFactor <= 1, "Upsampling factor must be at least 2." ); const int roundingOffset = 1 << ( log2UpsmpFactor - 1 ); const Pel* srcLine = src; Pel* dstLine = dst; const Pel* bndryLine = bndry + bndryStep - 1; for( int k = 0; k < srcSizeOrthDim; k++ ) { const Pel* before = bndryLine; const Pel* behind = srcLine; Pel* currDst = dstLine; for( int j = 0; j < srcSizeUpsmpDim; j++ ) { Pel valBehind = *behind; Pel valBefore = *before; Pel valDiff = valBehind - valBefore; Pel scaledVal = ( valBefore << log2UpsmpFactor ) + roundingOffset; for( int i = 0; i < upsmpFactor; i++ ) { scaledVal += valDiff; *currDst = scaledVal >> log2UpsmpFactor; currDst += dstStep; } before = behind; behind += srcStep; } srcLine += srcStride; dstLine += dstStride; bndryLine += bndryStep; } } void PredictorMIP::predictionUpsampling( Pel* const dst, const Pel* const src ) const { const Pel* verSrc = src; SizeType verSrcStep = m_blockSize.width; if( m_upsmpFactorHor > 1 ) { Pel* const horDst = dst + (m_upsmpFactorVer - 1) * m_blockSize.width; verSrc = horDst; verSrcStep *= m_upsmpFactorVer; predictionUpsampling1D( horDst, src, m_refSamplesLeft, m_reducedPredSize, m_reducedPredSize, 1, m_reducedPredSize, 1, verSrcStep, m_upsmpFactorVer, m_upsmpFactorHor ); } if( m_upsmpFactorVer > 1 ) { predictionUpsampling1D( dst, verSrc, m_refSamplesTop, m_reducedPredSize, m_blockSize.width, verSrcStep, 1, m_blockSize.width, 1, 1, m_upsmpFactorVer ); } } const uint8_t* PredictorMIP::getMatrixData(const int modeIdx) const { switch( m_sizeId ) { case 0: return &mipMatrix4x4[modeIdx][0][0]; case 1: return &mipMatrix8x8[modeIdx][0][0]; case 2: return &mipMatrix16x16[modeIdx][0][0]; default: THROW( "Invalid mipSizeId" ); } } void PredictorMIP::computeReducedPred( Pel*const result, const Pel* const input, const uint8_t* matrix, const bool transpose, const int bitDepth ) { const int inputSize = 2 * m_reducedBdrySize; // use local buffer for transposed result Pel resBufTransposed[MIP_MAX_REDUCED_OUTPUT_SAMPLES]; Pel*const resPtr = (transpose) ? resBufTransposed : result; int sum = 0; for( int i = 0; i < inputSize; i++ ) { sum += input[i]; } const int offset = (1 << (MIP_SHIFT_MATRIX - 1)) - MIP_OFFSET_MATRIX * sum; CHECK_RECOVERABLE( inputSize != 4 * (inputSize >> 2), "Error, input size not divisible by four" ); const uint8_t *weight = matrix; const int inputOffset = transpose ? m_inputOffsetTransp : m_inputOffset; const bool redSize = (m_sizeId == 2); int posRes = 0; for( int y = 0; y < m_reducedPredSize; y++ ) { for( int x = 0; x < m_reducedPredSize; x++ ) { if( redSize ) weight -= 1; int tmp0 = redSize ? 0 : (input[0] * weight[0]); int tmp1 = input[1] * weight[1]; int tmp2 = input[2] * weight[2]; int tmp3 = input[3] * weight[3]; for (int i = 4; i < inputSize; i += 4) { tmp0 += input[i] * weight[i]; tmp1 += input[i + 1] * weight[i + 1]; tmp2 += input[i + 2] * weight[i + 2]; tmp3 += input[i + 3] * weight[i + 3]; } resPtr[posRes++] = ClipBD(((tmp0 + tmp1 + tmp2 + tmp3 + offset) >> MIP_SHIFT_MATRIX) + inputOffset, bitDepth); weight += inputSize; } } if( transpose ) { for( int y = 0; y < m_reducedPredSize; y++ ) { for( int x = 0; x < m_reducedPredSize; x++ ) { result[ y * m_reducedPredSize + x ] = resPtr[ x * m_reducedPredSize + y ]; } } } } } // namespace Mip MatrixIntraPrediction::MatrixIntraPrediction() { } void MatrixIntraPrediction::prepareInputForPred(const CPelBuf &src, const Area& puArea, const int bitDepth, const ComponentID compId) { m_component = compId; m_predictorMip.deriveBoundaryData(src, puArea, bitDepth); } void MatrixIntraPrediction::predBlock( const Size &puSize, const int intraMode, PelBuf& dst, const bool transpose, const int bitDepth, const ComponentID compId, Pel* const resultMip ) { CHECK_RECOVERABLE( m_component != compId, "Boundary has not been prepared for this component." ); m_predictorMip.getPrediction( resultMip, intraMode, transpose, bitDepth ); for( int y = 0; y < puSize.height; y++ ) { Pel* const resultLine = &resultMip[y * puSize.width]; Pel* dstLine = dst.bufAt( 0, y ); for( int x = 0; x < puSize.width; x += 4 ) { dstLine[x + 0] = Pel( resultLine[x + 0] ); dstLine[x + 1] = Pel( resultLine[x + 1] ); dstLine[x + 2] = Pel( resultLine[x + 2] ); dstLine[x + 3] = Pel( resultLine[x + 3] ); } } } }