/* ----------------------------------------------------------------------------- The copyright in this software is being made available under the Clear BSD License, included below. No patent rights, trademark rights and/or other Intellectual Property Rights other than the copyrights concerning the Software are granted under this license. The Clear BSD License Copyright (c) 2018-2023, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. & The VVdeC Authors. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted (subject to the limitations in the disclaimer below) provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ------------------------------------------------------------------------------------------- */ /** \file Picture.cpp * \brief Description of a coded picture */ #include "Picture.h" #include "ChromaFormat.h" // --------------------------------------------------------------------------- // picture methods // --------------------------------------------------------------------------- namespace vvdec { void paddPicBorderTopCore(Pel *pi, ptrdiff_t stride,int width,int xmargin,int ymargin) { for( int x = 0; x < xmargin; x++ ) { pi[-xmargin + x] = pi[0]; pi[width + x] = pi[width - 1]; } pi -= xmargin; // pi is now (-marginX, 0) for( int y = 0; y < ymargin; y++ ) { ::memcpy( pi - ( y + 1 )*stride, pi, sizeof( Pel )*( width + ( xmargin << 1 ) ) ); } } void paddPicBorderBotCore(Pel *pi, ptrdiff_t stride,int width,int xmargin,int ymargin) { for( int x = 0; x < xmargin; x++ ) { pi[-xmargin + x] = pi[0]; pi[width + x] = pi[width - 1]; } pi -= xmargin; // pi is now the (-marginX, height-1) for( int y = 0; y < ymargin; y++ ) { ::memcpy( pi + ( y + 1 )*stride, pi, sizeof( Pel )*( width + ( xmargin << 1 ) ) ); } } void paddPicBorderLeftRightCore(Pel *pi, ptrdiff_t stride,int width,int xmargin,int height) { for( int y = 1; y < ( height - 1 ); y++ ) { for( int x = 0; x < xmargin; x++ ) { pi[-xmargin + x] = pi[0]; pi[width + x] = pi[width - 1]; } pi += stride; } } void Picture::create(const ChromaFormat &_chromaFormat, const Size &size, const unsigned _maxCUSize, const unsigned _margin, const int _layerId, UserAllocator* _userAllocator ) { layerId = _layerId; UnitArea::operator=( UnitArea( _chromaFormat, Area( Position{ 0, 0 }, size ) ) ); margin = _margin; m_bufs[PIC_RECONSTRUCTION].create( _chromaFormat, size, _maxCUSize, _margin, MEMORY_ALIGN_DEF_SIZE, true, _userAllocator ); } void Picture::createWrapAroundBuf( const bool isWrapAround, const unsigned _maxCUSize ) { if( isWrapAround ) m_bufs[PIC_RECON_WRAP].create( chromaFormat, Y().size(), _maxCUSize, margin, MEMORY_ALIGN_DEF_SIZE ); } void Picture::resetForUse( int _layerId ) { CHECK_RECOVERABLE( lockedByApplication, "the picture can not be re-used, because it has not been unlocked by the application." ); if( cs ) { cs->resetForUse(); } m_subPicRefBufs.clear(); m_dProcessingTime = 0; subPicExtStarted = false; borderExtStarted = false; dpbReferenceMark = unreferenced; stillReferenced = false; isReferencePic = false; progress = Picture::init; neededForOutput = false; wasLost = false; error = false; exceptionThrownOut = false; topField = false; fieldPic = false; nonReferencePictureFlag = false; skippedDecCount = 0; picCheckedDPH = false; subpicsCheckedDPH.clear(); lockedByApplication = false; poc = 0; cts = 0; dts = 0; tempLayer = std::numeric_limits::max(); depth = 0; layerId = _layerId; eNalUnitType = NAL_UNIT_INVALID; bits = 0; rap = 0; decodingOrderNumber = 0; sliceSubpicIdx.clear(); subPictures.clear(); subLayerNonReferencePictureDueToSTSA = 0; m_divTasksCounter .clearException(); m_ctuTaskCounter .clearException(); m_motionTaskCounter .clearException(); m_borderExtTaskCounter.clearException(); m_copyWrapBufDone .clearException(); reconDone .clearException(); parseDone .clearException(); #if RECO_WHILE_PARSE std::for_each( ctuParsedBarrier.begin(), ctuParsedBarrier.end(), []( auto& b ) { b.clearException(); } ); #endif clearSliceBuffer(); SEI_internal::deleteSEIs( seiMessageList ); reconDone.lock(); } void Picture::destroy() { CHECK_RECOVERABLE( lockedByApplication, "the picture can not be destroyed, because it has not been unlocked by the application." ); for (uint32_t t = 0; t < NUM_PIC_TYPES; t++) { m_bufs[t].destroy(); } if( cs ) { cs->destroy(); delete cs; cs = nullptr; } #if RECO_WHILE_PARSE ctuParsedBarrier.clear(); #endif clearSliceBuffer(); SEI_internal::deleteSEIs( seiMessageList ); subpicsCheckedDPH.clear(); m_divTasksCounter .clearException(); m_ctuTaskCounter .clearException(); m_motionTaskCounter .clearException(); m_borderExtTaskCounter.clearException(); m_copyWrapBufDone .clearException(); reconDone .clearException(); parseDone .clearException(); #if RECO_WHILE_PARSE std::for_each( ctuParsedBarrier.begin(), ctuParsedBarrier.end(), []( auto& b ) { b.clearException(); } ); #endif } PelBuf Picture::getRecoBuf(const ComponentID compID, bool wrap) { return getBuf(compID, wrap ? PIC_RECON_WRAP : PIC_RECONSTRUCTION); } const CPelBuf Picture::getRecoBuf(const ComponentID compID, bool wrap) const { return getBuf(compID, wrap ? PIC_RECON_WRAP : PIC_RECONSTRUCTION); } PelBuf Picture::getRecoBuf(const CompArea &blk, bool wrap) { return getBuf(blk, wrap ? PIC_RECON_WRAP : PIC_RECONSTRUCTION); } const CPelBuf Picture::getRecoBuf(const CompArea &blk, bool wrap) const { return getBuf(blk, wrap ? PIC_RECON_WRAP : PIC_RECONSTRUCTION); } PelUnitBuf Picture::getRecoBuf(const UnitArea &unit, bool wrap) { return getBuf(unit, wrap ? PIC_RECON_WRAP : PIC_RECONSTRUCTION); } const CPelUnitBuf Picture::getRecoBuf(const UnitArea &unit, bool wrap) const { return getBuf(unit, wrap ? PIC_RECON_WRAP : PIC_RECONSTRUCTION); } PelUnitBuf Picture::getRecoBuf( bool wrap ) { return wrap ? m_bufs[PIC_RECON_WRAP] : m_bufs[PIC_RECONSTRUCTION]; } const CPelUnitBuf Picture::getRecoBuf( bool wrap ) const { return wrap ? m_bufs[PIC_RECON_WRAP] : m_bufs[PIC_RECONSTRUCTION]; } void Picture::finalInit( CUChunkCache* cuChunkCache, TUChunkCache* tuChunkCache, const SPS *sps, const PPS *pps, const std::shared_ptr& ph, const APS* const alfApss[ALF_CTB_MAX_NUM_APS], const APS* lmcsAps, const APS* scalingListAps, bool phPSupdate ) { SEI_internal::deleteSEIs( seiMessageList ); clearSliceBuffer(); const ChromaFormat chromaFormatIDC = sps->getChromaFormatIdc(); const int iWidth = pps->getPicWidthInLumaSamples(); const int iHeight = pps->getPicHeightInLumaSamples(); if( !cs ) { cs = new CodingStructure( cuChunkCache, tuChunkCache ); cs->create( chromaFormatIDC, Area( 0, 0, iWidth, iHeight ) ); } #if RECO_WHILE_PARSE if( ctuParsedBarrier.size() != pps->pcv->sizeInCtus ) { ctuParsedBarrier = std::vector( pps->pcv->sizeInCtus ); } #endif parseDone . lock(); cs->picture = this; cs->picHeader = ph; cs->pps = pps ? pps->getSharedPtr() : nullptr; cs->sps = sps ? sps->getSharedPtr() : nullptr; if( phPSupdate ) { ph->setSPSId ( sps->getSPSId() ); ph->setPPSId ( pps->getPPSId() ); ph->setLmcsAPS ( lmcsAps ? lmcsAps ->getSharedPtr() : nullptr ); ph->setScalingListAPS( scalingListAps ? scalingListAps->getSharedPtr() : nullptr ); } nonReferencePictureFlag = ph->getNonReferencePictureFlag(); for( int i = 0; i < ALF_CTB_MAX_NUM_APS; ++i ) { cs->alfApss[i] = alfApss[i] ? alfApss[i]->getSharedPtr() : nullptr; } if( lmcsAps ) { cs->lmcsAps = lmcsAps ? lmcsAps->getSharedPtr() : nullptr; } cs->pcv = pps->pcv.get(); cs->allocTempInternals(); cs->rebindPicBufs(); resetProcessingTime(); paddPicBorderBot = paddPicBorderBotCore; paddPicBorderTop = paddPicBorderTopCore; paddPicBorderLeftRight = paddPicBorderLeftRightCore; #if ENABLE_SIMD_OPT_PICTURE && defined( TARGET_SIMD_X86 ) initPictureX86(); #endif } Slice* Picture::allocateNewSlice( Slice** pilot ) { if( pilot ) { slices.push_back( *pilot ); *pilot = new Slice; if( slices.size() >= 2 ) { ( *pilot )->copySliceInfo( slices[slices.size() - 2] ); ( *pilot )->initSlice(); } ( *pilot )->setSPS( 0 ); ( *pilot )->setPPS( 0 ); ( *pilot )->setVPS( 0 ); ( *pilot )->clearAlfAPSs(); } else { slices.push_back( new Slice ); if( slices.size() >= 2 ) { slices.back()->copySliceInfo( slices[slices.size() - 2] ); slices.back()->initSlice(); } } Slice* slice = slices.back(); slice->setPPS( cs->pps.get() ); slice->setSPS( cs->sps.get() ); slice->setVPS( cs->vps.get() ); slice->setAlfApss( cs->alfApss ); slice->setPic( this ); return slice; } void Picture::clearSliceBuffer() { for( auto &s: slices ) { delete s; } slices.clear(); } bool Picture::lastSliceOfPicPresent() const { if( slices.empty() ) { return false; } const Slice* lastSlice = slices.back(); const unsigned lastCtuInSlice = lastSlice->getCtuAddrInSlice( lastSlice->getNumCtuInSlice() - 1 ); return lastCtuInSlice == lastSlice->getPPS()->pcv->sizeInCtus - 1; } void Picture::waitForAllTasks() { m_motionTaskCounter.wait_nothrow(); m_ctuTaskCounter.wait_nothrow(); m_borderExtTaskCounter.wait_nothrow(); m_divTasksCounter.wait_nothrow(); // this waits for the slice parsing and the finishPic Task } void Picture::ensureUsableAsRef() { #if RECO_WHILE_PARSE ctuParsedBarrier.clear(); #endif neededForOutput = false; // set referenced to true, because we don't know if it has been set correctly, but that way it will be available as a reference pic dpbReferenceMark = ShortTerm; stillReferenced = true; isReferencePic = true; // ensure cs->m_colMiMap is set to zero cs->initStructData(); CHECK( m_motionTaskCounter.hasException(), "to be usable as reference the picture should not have an Exception on the dmvr task counter" ); CHECK( reconDone.hasException(), "to be usable as reference the picture should not have an Exception reconDone barrier" ); } void Picture::fillGrey( const SPS* sps ) { // fill in grey buffer for missing reference pictures (GDR or broken bitstream) const uint32_t yFill = 1 << ( sps->getBitDepth( CHANNEL_TYPE_LUMA ) - 1 ); const uint32_t cFill = 1 << ( sps->getBitDepth( CHANNEL_TYPE_CHROMA ) - 1 ); getRecoBuf().Y().fill( yFill ); getRecoBuf().Cb().fill( cFill ); getRecoBuf().Cr().fill( cFill ); progress = Picture::reconstructed; reconDone.unlock(); } void Picture::extendPicBorder( bool top, bool bottom, bool leftrightT, bool leftrightB, ChannelType chType ) { if( cs->pps->getUseWrapAround() ) { extendPicBorderWrap( top, bottom, leftrightT, leftrightB, chType ); } extendPicBorderBuf( m_bufs[PIC_RECONSTRUCTION], top, bottom, leftrightT, leftrightB, chType ); } void Picture::extendPicBorderWrap( bool top, bool bottom, bool leftrightT, bool leftrightB, ChannelType chType ) { for( int comp = 0; comp < getNumberValidComponents( cs->area.chromaFormat ); comp++ ) { ComponentID compID = ComponentID( comp ); if( chType != MAX_NUM_CHANNEL_TYPE && toChannelType( compID ) != chType ) continue; PelBuf prw = m_bufs[PIC_RECON_WRAP].get( compID ); const int xmargin = margin >> getComponentScaleX( compID, cs->area.chromaFormat ); const int ymargin = margin >> getComponentScaleY( compID, cs->area.chromaFormat ); int xoffset = cs->pps->getWrapAroundOffset() >> getComponentScaleX( compID, cs->area.chromaFormat ); if( leftrightT ) { Pel* piprw = prw.bufAt( 0, 1 ); for( int y = 1; y < prw.height / 2; y++ ) { for( int x = 0; x < xmargin; x++ ) { if( x < xoffset ) { piprw[-x - 1] = piprw[-x - 1 + xoffset]; piprw[prw.width + x] = piprw[prw.width + x - xoffset]; } else { piprw[-x - 1] = piprw[0]; piprw[prw.width + x] = piprw[prw.width - 1]; } } piprw += prw.stride; } } if( leftrightB ) { Pel* piprw = prw.bufAt( 0, prw.height / 2 ); for( int y = 1; y < prw.height / 2; y++ ) { for( int x = 0; x < xmargin; x++ ) { if( x < xoffset ) { piprw[-x - 1] = piprw[-x - 1 + xoffset]; piprw[prw.width + x] = piprw[prw.width + x - xoffset]; } else { piprw[-x - 1] = piprw[0]; piprw[prw.width + x] = piprw[prw.width - 1]; } } piprw += prw.stride; } } if( bottom ) { Pel* piprw = prw.bufAt( 0, prw.height - 1 ); for( int x = 0; x < xmargin; x++ ) { if( x < xoffset ) { piprw[-x - 1] = piprw[-x - 1 + xoffset]; piprw[prw.width + x] = piprw[prw.width + x - xoffset]; } else { piprw[-x - 1] = piprw[0]; piprw[prw.width + x] = piprw[prw.width - 1]; } } piprw -= xmargin; // pi is now the (-marginX, height-1) for( int y = 0; y < ymargin; y++ ) { ::memcpy( piprw + ( y + 1 ) * prw.stride, piprw, sizeof( Pel ) * ( prw.width + ( xmargin << 1 ) ) ); } } if( top ) { Pel* piprw = prw.bufAt( 0, 0 ); for( int x = 0; x < xmargin; x++ ) { if( x < xoffset ) { piprw[-x - 1] = piprw[-x - 1 + xoffset]; piprw[prw.width + x] = piprw[prw.width + x - xoffset]; } else { piprw[-x - 1] = piprw[0]; piprw[prw.width + x] = piprw[prw.width - 1]; } } piprw -= xmargin; // pi is now (-marginX, 0) for( int y = 0; y < ymargin; y++ ) { ::memcpy( piprw - ( y + 1 ) * prw.stride, piprw, sizeof( Pel ) * ( prw.width + ( xmargin << 1 ) ) ); } } } } void Picture::extendPicBorderBuf( PelStorage& storage, bool top, bool bottom, bool leftrightT, bool leftrightB, ChannelType chType ) { for( int comp = 0; comp < getNumberValidComponents( cs->area.chromaFormat ); comp++ ) { ComponentID compID = ComponentID( comp ); if( chType != MAX_NUM_CHANNEL_TYPE && toChannelType( compID ) != chType ) continue; PelBuf p = storage.bufs[compID]; const int xmargin = margin >> getComponentScaleX( compID, cs->area.chromaFormat ); const int ymargin = margin >> getComponentScaleY( compID, cs->area.chromaFormat ); if( leftrightT ) { Pel* pi = p.bufAt( 0, 1 ); paddPicBorderLeftRight( pi, p.stride, p.width, xmargin, 1 + p.height / 2 ); } if( leftrightB ) { Pel* pi = p.bufAt( 0, p.height / 2 ); paddPicBorderLeftRight( pi, p.stride, p.width, xmargin, 1 + p.height / 2 ); } if( bottom ) { // pi is now the (0,height) (bottom left of image within bigger picture Pel* pi = p.bufAt( 0, p.height - 1 ); paddPicBorderBot( pi, p.stride, p.width, xmargin, ymargin ); } if( top ) { // pi is now the (0,height) (bottom left of image within bigger picture Pel* pi = p.bufAt( 0, 0 ); paddPicBorderTop( pi, p.stride, p.width, xmargin, ymargin ); } } } PelBuf Picture::getBuf( const CompArea &blk, const PictureType &type ) { if( !blk.valid() ) { return PelBuf(); } return m_bufs[type].getBuf( blk ); } const CPelBuf Picture::getBuf( const CompArea &blk, const PictureType &type ) const { if( !blk.valid() ) { return PelBuf(); } return m_bufs[type].getBuf( blk ); } PelUnitBuf Picture::getBuf( const UnitArea &unit, const PictureType &type ) { if( chromaFormat == CHROMA_400 ) { return PelUnitBuf( chromaFormat, getBuf( unit.Y(), type ) ); } else { return PelUnitBuf( chromaFormat, getBuf( unit.Y(), type ), getBuf( unit.Cb(), type ), getBuf( unit.Cr(), type ) ); } } const CPelUnitBuf Picture::getBuf( const UnitArea &unit, const PictureType &type ) const { if( chromaFormat == CHROMA_400 ) { return CPelUnitBuf( chromaFormat, getBuf( unit.Y(), type ) ); } else { return CPelUnitBuf( chromaFormat, getBuf( unit.Y(), type ), getBuf( unit.Cb(), type ), getBuf( unit.Cr(), type ) ); } } Pel* Picture::getOrigin( const PictureType &type, const ComponentID compID ) const { return m_bufs[type].getOrigin( compID ); } PelBuf Picture::getOriginBuf( const PictureType &type, const ComponentID compID ) { return m_bufs[type].getOriginBuf( compID ); } Size Picture::getBufSize( const PictureType &type, const ComponentID compID ) const { return m_bufs[type].getBufSize( compID ); } void* Picture::getBufAllocator( const ComponentID compID ) { return m_bufs[PIC_RECONSTRUCTION].getBufAllocator( compID ); } bool Picture::isExternAllocator() const { return m_bufs[PIC_RECONSTRUCTION].isExternAllocator(); } const UserAllocator* Picture::getUserAllocator() const { return m_bufs[PIC_RECONSTRUCTION].getUserAllocator(); } std::vector Picture::buildAllRefPicsVec() { std::vector refPics; for( const Slice* slice : this->slices ) { if( slice->isIntra() ) { continue; } for( int iDir = REF_PIC_LIST_0; iDir < NUM_REF_PIC_LIST_01; ++iDir ) { for( int iRefIdx = 0; iRefIdx < slice->getNumRefIdx( ( RefPicList ) iDir ); iRefIdx++ ) { Picture* refPic = slice->getNoConstRefPic( ( RefPicList ) iDir, iRefIdx ); if( std::find( refPics.cbegin(), refPics.cend(), refPic ) == refPics.cend() ) { refPics.push_back( refPic ); } } } } return refPics; } void Picture::startProcessingTimer() { std::lock_guard lock( m_timerMutex ); m_processingStartTime = std::chrono::steady_clock::now(); } void Picture::stopProcessingTimer() { std::lock_guard lock( m_timerMutex ); auto endTime = std::chrono::steady_clock::now(); m_dProcessingTime += std::chrono::duration(endTime - m_processingStartTime).count(); } };