/* ----------------------------------------------------------------------------- The copyright in this software is being made available under the Clear BSD License, included below. No patent rights, trademark rights and/or other Intellectual Property Rights other than the copyrights concerning the Software are granted under this license. The Clear BSD License Copyright (c) 2018-2023, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. & The VVdeC Authors. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted (subject to the limitations in the disclaimer below) provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ------------------------------------------------------------------------------------------- */ /** \file Reshape.cpp \brief common reshaper class */ #include "Reshape.h" #include #include #include #include #include "CommonLib/TimeProfiler.h" #if ENABLE_SIMD_OPT_BUFFER && defined( TARGET_SIMD_X86 ) #include #include #endif namespace vvdec { // ==================================================================================================================== // Constructor / destructor / create / destroy // ==================================================================================================================== Reshape::Reshape() { m_invLUT = nullptr; m_chromaScale = 1 << CSCALE_FP_PREC; m_vpduX = -1; m_vpduY = -1; } Reshape::~Reshape() { destroy(); } void Reshape::createDec(int bitDepth) { m_lumaBD = bitDepth; m_reshapeLUTSize = 1 << m_lumaBD; m_initCW = m_reshapeLUTSize / PIC_CODE_CW_BINS; if( !m_invLUT ) { m_invLUT = ( Pel* ) xMalloc( Pel, m_reshapeLUTSize + 1 ); memset( m_invLUT, 0, ( m_reshapeLUTSize + 1 ) * sizeof( Pel ) ); } if (m_binCW.empty()) m_binCW.resize(PIC_CODE_CW_BINS, 0); if (m_inputPivot.empty()) m_inputPivot.resize(PIC_CODE_CW_BINS + 1, 0); if (m_fwdScaleCoef.empty()) m_fwdScaleCoef.resize(PIC_CODE_CW_BINS, 1 << FP_PREC); if (m_invScaleCoef.empty()) m_invScaleCoef.resize(PIC_CODE_CW_BINS, 1 << FP_PREC); if (m_reshapePivot.empty()) m_reshapePivot.resize(PIC_CODE_CW_BINS + 1, 0); if (m_chromaAdjHelpLUT.empty()) m_chromaAdjHelpLUT.resize(PIC_CODE_CW_BINS, 1<getLayerId() ) { for (int i = 0; i < vps->getNumOutputLayerSets(); i++ ) { bool isCurrLayerInOls = false; bool isRefLayerInOls = false; for( int j = vps->getNumLayersInOls(i) - 1; j >= 0; j-- ) { if( vps->getLayerIdInOls(i, j) == nalUnitLayerId ) { isCurrLayerInOls = true; } if( vps->getLayerIdInOls(i, j) == picHeader.getLmcsAPS()->getLayerId() ) { isRefLayerInOls = true; } } CHECK_RECOVERABLE( isCurrLayerInOls && !isRefLayerInOls, "When VCL NAl unit in layer A refers to APS in layer B, all OLS that contains layer A shall also contains layer B" ); } } const SliceReshapeInfo& sInfo = picHeader.getLmcsAPS()->getReshaperAPSInfo(); m_sliceReshapeInfo.sliceReshaperEnableFlag = true; m_sliceReshapeInfo.sliceReshaperModelPresentFlag = true; m_sliceReshapeInfo.enableChromaAdj = picHeader.getLmcsChromaResidualScaleFlag(); m_sliceReshapeInfo.reshaperModelMaxBinIdx = sInfo.reshaperModelMaxBinIdx; m_sliceReshapeInfo.reshaperModelMinBinIdx = sInfo.reshaperModelMinBinIdx; m_sliceReshapeInfo.maxNbitsNeededDeltaCW = sInfo.maxNbitsNeededDeltaCW; m_sliceReshapeInfo.chrResScalingOffset = sInfo.chrResScalingOffset; memcpy( m_sliceReshapeInfo.reshaperModelBinCWDelta, sInfo.reshaperModelBinCWDelta, sizeof( int ) * ( PIC_CODE_CW_BINS ) ); constructReshaper(); } else { m_sliceReshapeInfo.sliceReshaperEnableFlag = false; m_sliceReshapeInfo.enableChromaAdj = false; m_sliceReshapeInfo.sliceReshaperModelPresentFlag = false; } m_vpduX = -1; m_vpduY = -1; } bool Reshape::getCTUFlag( const Slice& slice ) const { if( (slice.getSliceType() == I_SLICE) && m_sliceReshapeInfo.sliceReshaperEnableFlag ) { return false; } else { return m_sliceReshapeInfo.sliceReshaperEnableFlag; } } /** compute chroma residuce scale for TU * \param average luma pred of TU * \return chroma residue scale */ int Reshape::calculateChromaAdj(Pel avgLuma) const { int iAdj = m_chromaAdjHelpLUT[getPWLIdxInv(avgLuma)]; return(iAdj); } /** compute chroma residuce scale for TU * \param average luma pred of TU * \return chroma residue scale */ int Reshape::calculateChromaAdjVpduNei(TransformUnit &tu, const Position pos) { CodingStructure &cs = *tu.cu->cs; int xPos = pos.x; int yPos = pos.y; int ctuSize = cs.sps->getCTUSize(); int numNeighbor = std::min(64, ctuSize); int numNeighborLog = getLog2(numNeighbor); if (ctuSize == 128) { xPos &= ~63; yPos &= ~63; } else { xPos &= ~( ctuSize - 1 ); yPos &= ~( ctuSize - 1 ); } if( isVPDUprocessed( xPos, yPos ) ) { return getChromaScale(); } else { setVPDULoc(xPos, yPos); Position topLeft(xPos, yPos); CodingUnit *topLeftLuma; const CodingUnit *cuAbove, *cuLeft; topLeftLuma = cs.getCU( topLeft, CHANNEL_TYPE_LUMA ); cuAbove = cs.getCURestricted( topLeftLuma->lumaPos().offset( 0, -1 ), *topLeftLuma, CHANNEL_TYPE_LUMA, topLeftLuma->ly() == yPos ? topLeftLuma : topLeftLuma->above ); cuLeft = cs.getCURestricted( topLeftLuma->lumaPos().offset( -1, 0 ), *topLeftLuma, CHANNEL_TYPE_LUMA, topLeftLuma->lx() == xPos ? topLeftLuma : topLeftLuma->left ); xPos = topLeftLuma->lumaPos().x; yPos = topLeftLuma->lumaPos().y; CompArea lumaArea = CompArea(COMPONENT_Y, topLeftLuma->lumaPos(), topLeftLuma->lumaSize()); PelBuf piRecoY = cs.picture->getRecoBuf(lumaArea); ptrdiff_t strideY = piRecoY.stride; int chromaScale = (1 << CSCALE_FP_PREC); int lumaValue = -1; Pel* recSrc0 = piRecoY.bufAt(0, 0); const uint32_t picH = tu.cu->cs->picture->lheight(); const uint32_t picW = tu.cu->cs->picture->lwidth(); const Pel valueDC = 1 << (tu.cu->sps->getBitDepth(CHANNEL_TYPE_LUMA) - 1); int32_t recLuma = 0; int pelnum = 0; if (cuLeft != nullptr) { for (int i = 0; i < numNeighbor; i++) { int k = (yPos + i) >= picH ? (picH - yPos - 1) : i; recLuma += recSrc0[-1 + k * strideY]; pelnum++; } } if (cuAbove != nullptr) { for (int i = 0; i < numNeighbor; i++) { int k = (xPos + i) >= picW ? (picW - xPos - 1) : i; recLuma += recSrc0[-strideY + k]; pelnum++; } } if (pelnum == numNeighbor) { lumaValue = (recLuma + (1 << (numNeighborLog - 1))) >> numNeighborLog; } else if (pelnum == (numNeighbor << 1)) { lumaValue = (recLuma + (1 << numNeighborLog)) >> (numNeighborLog + 1); } else { CHECK_RECOVERABLE(pelnum != 0, ""); lumaValue = valueDC; } chromaScale = calculateChromaAdj(lumaValue); setChromaScale(chromaScale); return(chromaScale); } } /** find inx of PWL for inverse mapping * \param average luma pred of TU * \return idx of PWL for inverse mapping */ int Reshape::getPWLIdxInv(int lumaVal) const { int idxS = 0; for (idxS = m_sliceReshapeInfo.reshaperModelMinBinIdx; (idxS <= m_sliceReshapeInfo.reshaperModelMaxBinIdx); idxS++) { if (lumaVal < m_reshapePivot[idxS + 1]) break; } return std::min(idxS, PIC_CODE_CW_BINS-1); } /** -copy Slice reshaper info structure \param tInfo describing the target Slice reshaper info structure \param sInfo describing the source Slice reshaper info structure */ void Reshape::copySliceReshaperInfo(SliceReshapeInfo& tInfo, SliceReshapeInfo& sInfo) { tInfo.sliceReshaperModelPresentFlag = sInfo.sliceReshaperModelPresentFlag; if (sInfo.sliceReshaperModelPresentFlag) { tInfo.reshaperModelMaxBinIdx = sInfo.reshaperModelMaxBinIdx; tInfo.reshaperModelMinBinIdx = sInfo.reshaperModelMinBinIdx; memcpy(tInfo.reshaperModelBinCWDelta, sInfo.reshaperModelBinCWDelta, sizeof(int)*(PIC_CODE_CW_BINS)); tInfo.maxNbitsNeededDeltaCW = sInfo.maxNbitsNeededDeltaCW; tInfo.chrResScalingOffset = sInfo.chrResScalingOffset; } tInfo.sliceReshaperEnableFlag = sInfo.sliceReshaperEnableFlag; if (sInfo.sliceReshaperEnableFlag) tInfo.enableChromaAdj = sInfo.enableChromaAdj; else tInfo.enableChromaAdj = 0; } /** Construct reshaper from syntax * \param void * \return void */ void Reshape::constructReshaper() { int pwlFwdLUTsize = PIC_CODE_CW_BINS; int pwlFwdBinLen = m_reshapeLUTSize / PIC_CODE_CW_BINS; for (int i = 0; i < m_sliceReshapeInfo.reshaperModelMinBinIdx; i++) m_binCW[i] = 0; for (int i = m_sliceReshapeInfo.reshaperModelMaxBinIdx + 1; i < PIC_CODE_CW_BINS; i++) m_binCW[i] = 0; for (int i = m_sliceReshapeInfo.reshaperModelMinBinIdx; i <= m_sliceReshapeInfo.reshaperModelMaxBinIdx; i++) m_binCW[i] = (uint16_t)(m_sliceReshapeInfo.reshaperModelBinCWDelta[i] + (int)m_initCW); for (int i = 0; i < pwlFwdLUTsize; i++) { m_reshapePivot[i + 1] = m_reshapePivot[i] + m_binCW[i]; m_inputPivot[i + 1] = m_inputPivot[i] + m_initCW; m_fwdScaleCoef[i] = ((int32_t)m_binCW[i] * (1 << FP_PREC) + (1 << (getLog2(pwlFwdBinLen) - 1))) >> getLog2(pwlFwdBinLen); if (m_binCW[i] == 0) { m_invScaleCoef[i] = 0; m_chromaAdjHelpLUT[i] = 1 << CSCALE_FP_PREC; } else { CHECK_RECOVERABLE( m_initCW * (1 << FP_PREC) / m_binCW[i] > (1 << 15) - 1, "Inverse scale coeff doesn't fit in a short!" ); m_invScaleCoef[i] = (int32_t)(m_initCW * (1 << FP_PREC) / m_binCW[i]); m_chromaAdjHelpLUT[i] = (int32_t)(m_initCW * (1 << FP_PREC) / ( m_binCW[i] + m_sliceReshapeInfo.chrResScalingOffset ) ); } } for (int lumaSample = 0; lumaSample < m_reshapeLUTSize; lumaSample++) { int idxYInv = getPWLIdxInv(lumaSample); int invSample = m_inputPivot[idxYInv] + ((m_invScaleCoef[idxYInv] * (lumaSample - m_reshapePivot[idxYInv]) + (1 << (FP_PREC - 1))) >> FP_PREC); m_invLUT[lumaSample] = Clip3((Pel)0, (Pel)((1 << m_lumaBD) - 1), (Pel)(invSample)); } } void Reshape::rspCtuBcw( CodingStructure& cs, int col, int ln ) const { if( !cs.sps->getUseReshaper() || !m_sliceReshapeInfo.sliceReshaperEnableFlag ) { return; } const Slice* slice = cs.getCtuData( col, ln ).slice; if( !slice->getLmcsEnabledFlag() ) { return; } PROFILER_SCOPE_AND_STAGE_EXT( 1, g_timeProfiler, P_RESHAPER, cs, CH_L ); const PreCalcValues& pcv = *cs.pcv; int xPos = pcv.maxCUWidth * col; int lw = std::min( pcv.lumaWidth - xPos, pcv.maxCUWidth ); int yPos = ln * pcv.maxCUHeight; int lh = std::min( pcv.lumaHeight - yPos, pcv.maxCUHeight ); PelBuf picYuvRec = cs.getRecoBuf( COMPONENT_Y ).subBuf( Position( xPos, yPos ), Size( lw, lh ) ); #if 1 if( g_pelBufOP.rspBcw ) g_pelBufOP.rspBcw( picYuvRec.buf, picYuvRec.stride, picYuvRec.width, picYuvRec.height, m_lumaBD, m_sliceReshapeInfo.reshaperModelMinBinIdx, m_sliceReshapeInfo.reshaperModelMaxBinIdx, m_reshapePivot.data(), m_invScaleCoef.data(), m_inputPivot.data() ); else #endif g_pelBufOP.applyLut( picYuvRec.buf, picYuvRec.stride, picYuvRec.width, picYuvRec.height, m_invLUT ); } void Reshape::rspBufFwd( PelBuf& buf ) const { g_pelBufOP.rspFwd( buf.buf, buf.stride, buf.width, buf.height, m_lumaBD, m_initCW, m_reshapePivot.data(), m_fwdScaleCoef.data(), m_inputPivot.data() ); } }