/* ----------------------------------------------------------------------------- The copyright in this software is being made available under the Clear BSD License, included below. No patent rights, trademark rights and/or other Intellectual Property Rights other than the copyrights concerning the Software are granted under this license. The Clear BSD License Copyright (c) 2018-2023, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. & The VVdeC Authors. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted (subject to the limitations in the disclaimer below) provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ------------------------------------------------------------------------------------------- */ /** \file DecSlice.cpp \brief slice decoder class */ #include "DecSlice.h" #include "CommonLib/TrQuant.h" #include "CommonLib/UnitTools.h" #include "CommonLib/dtrace_next.h" #include "CommonLib/TimeProfiler.h" #include "CommonLib/AdaptiveLoopFilter.h" #include namespace vvdec { ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// void DecSlice::parseSlice( Slice* slice, InputBitstream* bitstream, int threadId ) { PROFILER_SCOPE_AND_STAGE_EXT( 1, g_timeProfiler, P_CONTROL_PARSE_DERIVE_LL, *slice->getPic()->cs, CH_L ); const unsigned numSubstreams = slice->getNumberOfSubstreamSizes() + 1; // Table of extracted substreams. std::vector> ppcSubstreams( numSubstreams ); for( unsigned idx = 0; idx < numSubstreams; idx++ ) { ppcSubstreams[idx].reset( bitstream->extractSubstream( idx + 1 < numSubstreams ? ( slice->getSubstreamSize( idx ) << 3 ) : bitstream->getNumBitsLeft() ) ); } const SPS* sps = slice->getSPS(); Picture* pic = slice->getPic(); // setup coding structure CodingStructure& cs = *pic->cs; cs.chromaQpAdj = 0; const int startCtuTsAddr = slice->getFirstCtuRsAddrInSlice(); const unsigned widthInCtus = cs.pcv->widthInCtus; const bool wavefrontsEnabled = cs.sps->getEntropyCodingSyncEnabledFlag(); const bool entryPointPresent = cs.sps->getEntryPointsPresentFlag(); AdaptiveLoopFilter::reconstructCoeffAPSs( *slice ); CABACReader cabacReader; cabacReader.initBitstream( ppcSubstreams[0].get() ); cabacReader.initCtxModels( *slice ); // if first slice, finish init of the coding structure if( startCtuTsAddr == 0 ) { cs.initStructData(); } // Quantization parameter int prevQP[2] = { slice->getSliceQp(), slice->getSliceQp() }; CHECK_RECOVERABLE( prevQP[0] == std::numeric_limits::max(), "Invalid previous QP" ); DTRACE( g_trace_ctx, D_HEADER, "=========== POC: %d ===========\n", slice->getPOC() ); unsigned subStrmId = 0; for( unsigned ctuIdx = 0; ctuIdx < slice->getNumCtuInSlice(); ctuIdx++ ) { const unsigned ctuRsAddr = slice->getCtuAddrInSlice(ctuIdx); const unsigned ctuXPosInCtus = ctuRsAddr % widthInCtus; const unsigned ctuYPosInCtus = ctuRsAddr / widthInCtus; const unsigned tileColIdx = slice->getPPS()->ctuToTileCol( ctuXPosInCtus ); const unsigned tileRowIdx = slice->getPPS()->ctuToTileRow( ctuYPosInCtus ); const unsigned tileXPosInCtus = slice->getPPS()->getTileColumnBd( tileColIdx ); const unsigned tileYPosInCtus = slice->getPPS()->getTileRowBd( tileRowIdx ); const unsigned tileColWidth = slice->getPPS()->getTileColumnWidth( tileColIdx ); const unsigned tileRowHeight = slice->getPPS()->getTileRowHeight( tileRowIdx ); const unsigned tileIdx = slice->getPPS()->getTileIdx( ctuXPosInCtus, ctuYPosInCtus); const unsigned maxCUSize = sps->getMaxCUWidth(); const Position pos( ctuXPosInCtus*maxCUSize, ctuYPosInCtus*maxCUSize) ; const UnitArea ctuArea( cs.area.chromaFormat, Area( pos.x, pos.y, maxCUSize, maxCUSize ) ); // these checks only work, since we wait for the previous slice to finish parsing CHECK_RECOVERABLE( ctuXPosInCtus > 0 && cs.getCtuData( ctuRsAddr - 1 ).slice == nullptr, "CTU left not available RS:" << ctuRsAddr - 1 ); CHECK_RECOVERABLE( ctuYPosInCtus > 0 && cs.getCtuData( ctuRsAddr - widthInCtus ).slice == nullptr, "CTU above not available RS:" << ctuRsAddr - widthInCtus ); DTRACE_UPDATE( g_trace_ctx, std::make_pair( "ctu", ctuRsAddr ) ); cabacReader.initBitstream( ppcSubstreams[subStrmId].get() ); // set up CABAC contexts' state for this CTU if( ctuXPosInCtus == tileXPosInCtus && ctuYPosInCtus == tileYPosInCtus ) { if( ctuIdx != 0 ) // if it is the first CTU, then the entropy coder has already been reset { cabacReader.initCtxModels( *slice ); } prevQP[0] = prevQP[1] = slice->getSliceQp(); } else if( ctuXPosInCtus == tileXPosInCtus && wavefrontsEnabled ) { // Synchronize cabac probabilities with upper-right CTU if it's available and at the start of a line. if( ctuIdx != 0 ) // if it is the first CTU, then the entropy coder has already been reset { cabacReader.initCtxModels( *slice ); } if( cs.getCURestricted( pos.offset(0, -1), pos, slice->getIndependentSliceIdx(), tileIdx, CH_L ) ) { cabacReader.setCtx( m_entropyCodingSyncContextState[threadId] ); } prevQP[0] = prevQP[1] = slice->getSliceQp(); } //memset( cs.getCtuData( ctuRsAddr ).cuPtr, 0, sizeof( CtuData::cuPtr ) ); CtuData& ctuData = cs.getCtuData( ctuRsAddr ); ctuData.slice = slice; ctuData.pps = slice->getPPS(); ctuData.sps = slice->getSPS(); ctuData.ph = slice->getPicHeader(); cabacReader.coding_tree_unit( cs, slice, ctuArea, prevQP, ctuRsAddr ); if( ctuXPosInCtus == tileXPosInCtus && wavefrontsEnabled ) { m_entropyCodingSyncContextState[threadId] = cabacReader.getCtx(); } if( ctuIdx == slice->getNumCtuInSlice()-1 ) { unsigned binVal = cabacReader.terminating_bit(); CHECK_RECOVERABLE( !binVal, "Expecting a terminating bit" ); #if DECODER_CHECK_SUBSTREAM_AND_SLICE_TRAILING_BYTES cabacReader.remaining_bytes( false ); #endif } else if( ( ctuXPosInCtus + 1 == tileXPosInCtus + tileColWidth ) && ( ctuYPosInCtus + 1 == tileYPosInCtus + tileRowHeight || wavefrontsEnabled ) ) { // The sub-stream/stream should be terminated after this CTU. // (end of slice-segment, end of tile, end of wavefront-CTU-row) unsigned binVal = cabacReader.terminating_bit(); CHECK_RECOVERABLE( !binVal, "Expecting a terminating bit" ); if( entryPointPresent ) { #if DECODER_CHECK_SUBSTREAM_AND_SLICE_TRAILING_BYTES cabacReader.remaining_bytes( true ); #endif subStrmId++; } } #if RECO_WHILE_PARSE pic->ctuParsedBarrier[ctuRsAddr].unlock(); #endif if( ctuRsAddr + 1 == pic->cs->pcv->sizeInCtus ) { Picture::PicStateEnum expected = Picture::parsing; pic->progress.compare_exchange_strong( expected, Picture::parsed ); // if RECO_WHILE_PARSE reconstruction can already have started, so we make sure to not overwrite that state pic->parseDone.unlock(); } } } }