/* SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, copy, * modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Copyright: * 2017-2020 Evan Nemerson */ #if !defined(SIMDE_X86_SSE3_H) #define SIMDE_X86_SSE3_H #include "sse2.h" HEDLEY_DIAGNOSTIC_PUSH SIMDE_DISABLE_UNWANTED_DIAGNOSTICS SIMDE_BEGIN_DECLS_ SIMDE_FUNCTION_ATTRIBUTES simde__m128i simde_x_mm_deinterleaveeven_epi16 (simde__m128i a, simde__m128i b) { simde__m128i_private r_, a_ = simde__m128i_to_private(a), b_ = simde__m128i_to_private(b); #if defined(SIMDE_ARM_NEON_A64V8_NATIVE) r_.neon_i16 = vuzp1q_s16(a_.neon_i16, b_.neon_i16); #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE) int16x8x2_t t = vuzpq_s16(a_.neon_i16, b_.neon_i16); r_.neon_i16 = t.val[0]; #elif defined(SIMDE_WASM_SIMD128_NATIVE) r_.wasm_v128 = wasm_i16x8_shuffle(a_.wasm_v128, b_.wasm_v128, 0, 2, 4, 6, 8, 10, 12, 14); #elif defined(SIMDE_SHUFFLE_VECTOR_) r_.i16 = SIMDE_SHUFFLE_VECTOR_(16, 16, a_.i16, b_.i16, 0, 2, 4, 6, 8, 10, 12, 14); #else const size_t halfway_point = (sizeof(r_.i16) / sizeof(r_.i16[0])) / 2; for(size_t i = 0 ; i < halfway_point ; i++) { r_.i16[i] = a_.i16[2 * i]; r_.i16[i + halfway_point] = b_.i16[2 * i]; } #endif return simde__m128i_from_private(r_); } SIMDE_FUNCTION_ATTRIBUTES simde__m128i simde_x_mm_deinterleaveodd_epi16 (simde__m128i a, simde__m128i b) { simde__m128i_private r_, a_ = simde__m128i_to_private(a), b_ = simde__m128i_to_private(b); #if defined(SIMDE_ARM_NEON_A64V8_NATIVE) r_.neon_i16 = vuzp2q_s16(a_.neon_i16, b_.neon_i16); #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE) int16x8x2_t t = vuzpq_s16(a_.neon_i16, b_.neon_i16); r_.neon_i16 = t.val[1]; #elif defined(SIMDE_WASM_SIMD128_NATIVE) r_.wasm_v128 = wasm_i16x8_shuffle(a_.wasm_v128, b_.wasm_v128, 1, 3, 5, 7, 9, 11, 13, 15); #elif defined(SIMDE_SHUFFLE_VECTOR_) r_.i16 = SIMDE_SHUFFLE_VECTOR_(16, 16, a_.i16, b_.i16, 1, 3, 5, 7, 9, 11, 13, 15); #else const size_t halfway_point = (sizeof(r_.i16) / sizeof(r_.i16[0])) / 2; for(size_t i = 0 ; i < halfway_point ; i++) { r_.i16[i] = a_.i16[2 * i + 1]; r_.i16[i + halfway_point] = b_.i16[2 * i + 1]; } #endif return simde__m128i_from_private(r_); } SIMDE_FUNCTION_ATTRIBUTES simde__m128i simde_x_mm_deinterleaveeven_epi32 (simde__m128i a, simde__m128i b) { simde__m128i_private r_, a_ = simde__m128i_to_private(a), b_ = simde__m128i_to_private(b); #if defined(SIMDE_ARM_NEON_A64V8_NATIVE) r_.neon_i32 = vuzp1q_s32(a_.neon_i32, b_.neon_i32); #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE) int32x4x2_t t = vuzpq_s32(a_.neon_i32, b_.neon_i32); r_.neon_i32 = t.val[0]; #elif defined(SIMDE_WASM_SIMD128_NATIVE) r_.wasm_v128 = wasm_i32x4_shuffle(a_.wasm_v128, b_.wasm_v128, 0, 2, 4, 6); #elif defined(SIMDE_SHUFFLE_VECTOR_) r_.i32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.i32, b_.i32, 0, 2, 4, 6); #else const size_t halfway_point = (sizeof(r_.i32) / sizeof(r_.i32[0])) / 2; for(size_t i = 0 ; i < halfway_point ; i++) { r_.i32[i] = a_.i32[2 * i]; r_.i32[i + halfway_point] = b_.i32[2 * i]; } #endif return simde__m128i_from_private(r_); } SIMDE_FUNCTION_ATTRIBUTES simde__m128i simde_x_mm_deinterleaveodd_epi32 (simde__m128i a, simde__m128i b) { simde__m128i_private r_, a_ = simde__m128i_to_private(a), b_ = simde__m128i_to_private(b); #if defined(SIMDE_ARM_NEON_A64V8_NATIVE) r_.neon_i32 = vuzp2q_s32(a_.neon_i32, b_.neon_i32); #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE) int32x4x2_t t = vuzpq_s32(a_.neon_i32, b_.neon_i32); r_.neon_i32 = t.val[1]; #elif defined(SIMDE_WASM_SIMD128_NATIVE) r_.wasm_v128 = wasm_i32x4_shuffle(a_.wasm_v128, b_.wasm_v128, 1, 3, 5, 7); #elif defined(SIMDE_SHUFFLE_VECTOR_) r_.i32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.i32, b_.i32, 1, 3, 5, 7); #else const size_t halfway_point = (sizeof(r_.i32) / sizeof(r_.i32[0])) / 2; for(size_t i = 0 ; i < halfway_point ; i++) { r_.i32[i] = a_.i32[2 * i + 1]; r_.i32[i + halfway_point] = b_.i32[2 * i + 1]; } #endif return simde__m128i_from_private(r_); } SIMDE_FUNCTION_ATTRIBUTES simde__m128 simde_x_mm_deinterleaveeven_ps (simde__m128 a, simde__m128 b) { simde__m128_private r_, a_ = simde__m128_to_private(a), b_ = simde__m128_to_private(b); #if defined(SIMDE_ARM_NEON_A64V8_NATIVE) r_.neon_f32 = vuzp1q_f32(a_.neon_f32, b_.neon_f32); #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE) float32x4x2_t t = vuzpq_f32(a_.neon_f32, b_.neon_f32); r_.neon_f32 = t.val[0]; #elif defined(SIMDE_WASM_SIMD128_NATIVE) r_.wasm_v128 = wasm_i32x4_shuffle(a_.wasm_v128, b_.wasm_v128, 0, 2, 4, 6); #elif defined(SIMDE_SHUFFLE_VECTOR_) r_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.f32, b_.f32, 0, 2, 4, 6); #else const size_t halfway_point = (sizeof(r_.f32) / sizeof(r_.f32[0])) / 2; for(size_t i = 0 ; i < halfway_point ; i++) { r_.f32[i] = a_.f32[2 * i]; r_.f32[i + halfway_point] = b_.f32[2 * i]; } #endif return simde__m128_from_private(r_); } SIMDE_FUNCTION_ATTRIBUTES simde__m128 simde_x_mm_deinterleaveodd_ps (simde__m128 a, simde__m128 b) { simde__m128_private r_, a_ = simde__m128_to_private(a), b_ = simde__m128_to_private(b); #if defined(SIMDE_ARM_NEON_A64V8_NATIVE) r_.neon_f32 = vuzp2q_f32(a_.neon_f32, b_.neon_f32); #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE) float32x4x2_t t = vuzpq_f32(a_.neon_f32, b_.neon_f32); r_.neon_f32 = t.val[1]; #elif defined(SIMDE_WASM_SIMD128_NATIVE) r_.wasm_v128 = wasm_i32x4_shuffle(a_.wasm_v128, b_.wasm_v128, 1, 3, 5, 7); #elif defined(SIMDE_SHUFFLE_VECTOR_) r_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.f32, b_.f32, 1, 3, 5, 7); #else const size_t halfway_point = (sizeof(r_.f32) / sizeof(r_.f32[0])) / 2; for(size_t i = 0 ; i < halfway_point ; i++) { r_.f32[i] = a_.f32[2 * i + 1]; r_.f32[i + halfway_point] = b_.f32[2 * i + 1]; } #endif return simde__m128_from_private(r_); } SIMDE_FUNCTION_ATTRIBUTES simde__m128d simde_x_mm_deinterleaveeven_pd (simde__m128d a, simde__m128d b) { simde__m128d_private r_, a_ = simde__m128d_to_private(a), b_ = simde__m128d_to_private(b); #if defined(SIMDE_ARM_NEON_A64V8_NATIVE) r_.neon_f64 = vuzp1q_f64(a_.neon_f64, b_.neon_f64); #elif defined(SIMDE_WASM_SIMD128_NATIVE) r_.wasm_v128 = wasm_i64x2_shuffle(a_.wasm_v128, b_.wasm_v128, 0, 2); #elif defined(SIMDE_SHUFFLE_VECTOR_) r_.f64 = SIMDE_SHUFFLE_VECTOR_(64, 16, a_.f64, b_.f64, 0, 2); #else const size_t halfway_point = (sizeof(r_.f64) / sizeof(r_.f64[0])) / 2; for(size_t i = 0 ; i < halfway_point ; i++) { r_.f64[i] = a_.f64[2 * i]; r_.f64[i + halfway_point] = b_.f64[2 * i]; } #endif return simde__m128d_from_private(r_); } SIMDE_FUNCTION_ATTRIBUTES simde__m128d simde_x_mm_deinterleaveodd_pd (simde__m128d a, simde__m128d b) { simde__m128d_private r_, a_ = simde__m128d_to_private(a), b_ = simde__m128d_to_private(b); #if defined(SIMDE_ARM_NEON_A64V8_NATIVE) r_.neon_f64 = vuzp2q_f64(a_.neon_f64, b_.neon_f64); #elif defined(SIMDE_WASM_SIMD128_NATIVE) r_.wasm_v128 = wasm_i64x2_shuffle(a_.wasm_v128, b_.wasm_v128, 1, 3); #elif defined(SIMDE_SHUFFLE_VECTOR_) r_.f64 = SIMDE_SHUFFLE_VECTOR_(64, 16, a_.f64, b_.f64, 1, 3); #else const size_t halfway_point = (sizeof(r_.f64) / sizeof(r_.f64[0])) / 2; for(size_t i = 0 ; i < halfway_point ; i++) { r_.f64[i] = a_.f64[2 * i + 1]; r_.f64[i + halfway_point] = b_.f64[2 * i + 1]; } #endif return simde__m128d_from_private(r_); } SIMDE_FUNCTION_ATTRIBUTES simde__m128d simde_mm_addsub_pd (simde__m128d a, simde__m128d b) { #if defined(SIMDE_X86_SSE3_NATIVE) return _mm_addsub_pd(a, b); #else simde__m128d_private r_, a_ = simde__m128d_to_private(a), b_ = simde__m128d_to_private(b); #if defined(SIMDE_ARM_NEON_A64V8_NATIVE) float64x2_t rs = vsubq_f64(a_.neon_f64, b_.neon_f64); float64x2_t ra = vaddq_f64(a_.neon_f64, b_.neon_f64); return vcombine_f64(vget_low_f64(rs), vget_high_f64(ra)); #elif (SIMDE_NATURAL_VECTOR_SIZE > 0) && defined(SIMDE_SHUFFLE_VECTOR_) r_.f64 = SIMDE_SHUFFLE_VECTOR_(64, 16, a_.f64 - b_.f64, a_.f64 + b_.f64, 0, 3); #else for (size_t i = 0 ; i < (sizeof(r_.f64) / sizeof(r_.f64[0])) ; i += 2) { r_.f64[ i ] = a_.f64[ i ] - b_.f64[ i ]; r_.f64[1 + i] = a_.f64[1 + i] + b_.f64[1 + i]; } #endif return simde__m128d_from_private(r_); #endif } #if defined(SIMDE_X86_SSE3_ENABLE_NATIVE_ALIASES) # define _mm_addsub_pd(a, b) simde_mm_addsub_pd(a, b) #endif SIMDE_FUNCTION_ATTRIBUTES simde__m128 simde_mm_addsub_ps (simde__m128 a, simde__m128 b) { #if defined(SIMDE_X86_SSE3_NATIVE) return _mm_addsub_ps(a, b); #else simde__m128_private r_, a_ = simde__m128_to_private(a), b_ = simde__m128_to_private(b); #if defined(SIMDE_ARM_NEON_A64V8_NATIVE) float32x4_t rs = vsubq_f32(a_.neon_f32, b_.neon_f32); float32x4_t ra = vaddq_f32(a_.neon_f32, b_.neon_f32); return vtrn2q_f32(vreinterpretq_f32_s32(vrev64q_s32(vreinterpretq_s32_f32(rs))), ra); #elif (SIMDE_NATURAL_VECTOR_SIZE > 0) && defined(SIMDE_SHUFFLE_VECTOR_) r_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.f32 - b_.f32, a_.f32 + b_.f32, 0, 5, 2, 7); #else for (size_t i = 0 ; i < (sizeof(r_.f32) / sizeof(r_.f32[0])) ; i += 2) { r_.f32[ i ] = a_.f32[ i ] - b_.f32[ i ]; r_.f32[1 + i] = a_.f32[1 + i] + b_.f32[1 + i]; } #endif return simde__m128_from_private(r_); #endif } #if defined(SIMDE_X86_SSE3_ENABLE_NATIVE_ALIASES) # define _mm_addsub_ps(a, b) simde_mm_addsub_ps(a, b) #endif SIMDE_FUNCTION_ATTRIBUTES simde__m128d simde_mm_hadd_pd (simde__m128d a, simde__m128d b) { #if defined(SIMDE_X86_SSE3_NATIVE) return _mm_hadd_pd(a, b); #elif defined(SIMDE_ARM_NEON_A64V8_NATIVE) return simde__m128d_from_neon_f64(vpaddq_f64(simde__m128d_to_neon_f64(a), simde__m128d_to_neon_f64(b))); #else return simde_mm_add_pd(simde_x_mm_deinterleaveeven_pd(a, b), simde_x_mm_deinterleaveodd_pd(a, b)); #endif } #if defined(SIMDE_X86_SSE3_ENABLE_NATIVE_ALIASES) # define _mm_hadd_pd(a, b) simde_mm_hadd_pd(a, b) #endif SIMDE_FUNCTION_ATTRIBUTES simde__m128 simde_mm_hadd_ps (simde__m128 a, simde__m128 b) { #if defined(SIMDE_X86_SSE3_NATIVE) return _mm_hadd_ps(a, b); #elif defined(SIMDE_ARM_NEON_A64V8_NATIVE) return simde__m128_from_neon_f32(vpaddq_f32(simde__m128_to_neon_f32(a), simde__m128_to_neon_f32(b))); #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE) float32x4x2_t t = vuzpq_f32(simde__m128_to_neon_f32(a), simde__m128_to_neon_f32(b)); return simde__m128_from_neon_f32(vaddq_f32(t.val[0], t.val[1])); #else return simde_mm_add_ps(simde_x_mm_deinterleaveeven_ps(a, b), simde_x_mm_deinterleaveodd_ps(a, b)); #endif } #if defined(SIMDE_X86_SSE3_ENABLE_NATIVE_ALIASES) # define _mm_hadd_ps(a, b) simde_mm_hadd_ps(a, b) #endif SIMDE_FUNCTION_ATTRIBUTES simde__m128d simde_mm_hsub_pd (simde__m128d a, simde__m128d b) { #if defined(SIMDE_X86_SSE3_NATIVE) return _mm_hsub_pd(a, b); #else return simde_mm_sub_pd(simde_x_mm_deinterleaveeven_pd(a, b), simde_x_mm_deinterleaveodd_pd(a, b)); #endif } #if defined(SIMDE_X86_SSE3_ENABLE_NATIVE_ALIASES) # define _mm_hsub_pd(a, b) simde_mm_hsub_pd(a, b) #endif SIMDE_FUNCTION_ATTRIBUTES simde__m128 simde_mm_hsub_ps (simde__m128 a, simde__m128 b) { #if defined(SIMDE_X86_SSE3_NATIVE) return _mm_hsub_ps(a, b); #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE) float32x4x2_t t = vuzpq_f32(simde__m128_to_neon_f32(a), simde__m128_to_neon_f32(b)); return simde__m128_from_neon_f32(vaddq_f32(t.val[0], vnegq_f32(t.val[1]))); #else return simde_mm_sub_ps(simde_x_mm_deinterleaveeven_ps(a, b), simde_x_mm_deinterleaveodd_ps(a, b)); #endif } #if defined(SIMDE_X86_SSE3_ENABLE_NATIVE_ALIASES) # define _mm_hsub_ps(a, b) simde_mm_hsub_ps(a, b) #endif SIMDE_FUNCTION_ATTRIBUTES simde__m128i simde_mm_lddqu_si128 (simde__m128i const* mem_addr) { #if defined(SIMDE_X86_SSE3_NATIVE) return _mm_lddqu_si128(mem_addr); #else simde__m128i_private r_; #if defined(SIMDE_ARM_NEON_A32V7_NATIVE) r_.neon_i32 = vld1q_s32(HEDLEY_REINTERPRET_CAST(int32_t const*, mem_addr)); #else simde_memcpy(&r_, mem_addr, sizeof(r_)); #endif return simde__m128i_from_private(r_); #endif } #if defined(SIMDE_X86_SSE3_ENABLE_NATIVE_ALIASES) # define _mm_lddqu_si128(mem_addr) simde_mm_lddqu_si128(mem_addr) #endif SIMDE_FUNCTION_ATTRIBUTES simde__m128d simde_mm_loaddup_pd (simde_float64 const* mem_addr) { #if defined(SIMDE_X86_SSE3_NATIVE) return _mm_loaddup_pd(mem_addr); #else simde__m128d_private r_; #if defined(SIMDE_ARM_NEON_A64V8_NATIVE) r_.neon_f64 = vdupq_n_f64(*mem_addr); #elif defined(SIMDE_ARM_NEON_A32V7_NATIVE) r_.neon_i64 = vdupq_n_s64(*HEDLEY_REINTERPRET_CAST(int64_t const*, mem_addr)); #else r_.f64[0] = *mem_addr; r_.f64[1] = *mem_addr; #endif return simde__m128d_from_private(r_); #endif } #if defined(SIMDE_X86_SSE3_ENABLE_NATIVE_ALIASES) # define _mm_loaddup_pd(mem_addr) simde_mm_loaddup_pd(mem_addr) #endif SIMDE_FUNCTION_ATTRIBUTES simde__m128d simde_mm_movedup_pd (simde__m128d a) { #if defined(SIMDE_X86_SSE3_NATIVE) return _mm_movedup_pd(a); #else simde__m128d_private r_, a_ = simde__m128d_to_private(a); #if defined(SIMDE_ARM_NEON_A64V8_NATIVE) r_.neon_f64 = vdupq_laneq_f64(a_.neon_f64, 0); #elif defined(SIMDE_WASM_SIMD128_NATIVE) r_.wasm_v128 = wasm_i64x2_shuffle(a_.wasm_v128, a_.wasm_v128, 0, 0); #elif defined(SIMDE_VECTOR_SUBSCRIPT_OPS) && defined(SIMDE_SHUFFLE_VECTOR_) r_.f64 = SIMDE_SHUFFLE_VECTOR_(64, 16, a_.f64, a_.f64, 0, 0); #else r_.f64[0] = a_.f64[0]; r_.f64[1] = a_.f64[0]; #endif return simde__m128d_from_private(r_); #endif } #if defined(SIMDE_X86_SSE3_ENABLE_NATIVE_ALIASES) # define _mm_movedup_pd(a) simde_mm_movedup_pd(a) #endif SIMDE_FUNCTION_ATTRIBUTES simde__m128 simde_mm_movehdup_ps (simde__m128 a) { #if defined(SIMDE_X86_SSE3_NATIVE) return _mm_movehdup_ps(a); #else simde__m128_private r_, a_ = simde__m128_to_private(a); #if defined(SIMDE_ARM_NEON_A64V8_NATIVE) r_.neon_f32 = vtrn2q_f32(a_.neon_f32, a_.neon_f32); #elif defined(SIMDE_WASM_SIMD128_NATIVE) r_.wasm_v128 = wasm_i32x4_shuffle(a_.wasm_v128, a_.wasm_v128, 1, 1, 3, 3); #elif (SIMDE_NATURAL_VECTOR_SIZE > 0) && defined(SIMDE_SHUFFLE_VECTOR_) r_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.f32, a_.f32, 1, 1, 3, 3); #else r_.f32[0] = a_.f32[1]; r_.f32[1] = a_.f32[1]; r_.f32[2] = a_.f32[3]; r_.f32[3] = a_.f32[3]; #endif return simde__m128_from_private(r_); #endif } #if defined(SIMDE_X86_SSE3_ENABLE_NATIVE_ALIASES) # define _mm_movehdup_ps(a) simde_mm_movehdup_ps(a) #endif SIMDE_FUNCTION_ATTRIBUTES simde__m128 simde_mm_moveldup_ps (simde__m128 a) { #if defined(SIMDE__SSE3_NATIVE) return _mm_moveldup_ps(a); #else simde__m128_private r_, a_ = simde__m128_to_private(a); #if defined(SIMDE_ARM_NEON_A64V8_NATIVE) r_.neon_f32 = vtrn1q_f32(a_.neon_f32, a_.neon_f32); #elif defined(SIMDE_WASM_SIMD128_NATIVE) r_.wasm_v128 = wasm_i32x4_shuffle(a_.wasm_v128, a_.wasm_v128, 0, 0, 2, 2); #elif (SIMDE_NATURAL_VECTOR_SIZE > 0) && defined(SIMDE_SHUFFLE_VECTOR_) r_.f32 = SIMDE_SHUFFLE_VECTOR_(32, 16, a_.f32, a_.f32, 0, 0, 2, 2); #else r_.f32[0] = a_.f32[0]; r_.f32[1] = a_.f32[0]; r_.f32[2] = a_.f32[2]; r_.f32[3] = a_.f32[2]; #endif return simde__m128_from_private(r_); #endif } #if defined(SIMDE_X86_SSE3_ENABLE_NATIVE_ALIASES) # define _mm_moveldup_ps(a) simde_mm_moveldup_ps(a) #endif SIMDE_END_DECLS_ HEDLEY_DIAGNOSTIC_POP #endif /* !defined(SIMDE_X86_SSE3_H) */