/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * This file contains the function WebRtcSpl_Sqrt(). * The description header can be found in signal_processing_library.h * */ #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" #include int32_t WebRtcSpl_SqrtLocal(int32_t in); int32_t WebRtcSpl_SqrtLocal(int32_t in) { int16_t x_half, t16; int32_t A, B, x2; /* The following block performs: y=in/2 x=y-2^30 x_half=x/2^31 t = 1 + (x_half) - 0.5*((x_half)^2) + 0.5*((x_half)^3) - 0.625*((x_half)^4) + 0.875*((x_half)^5) */ B = in / 2; B = B - ((int32_t)0x40000000); // B = in/2 - 1/2 x_half = (int16_t)(B >> 16); // x_half = x/2 = (in-1)/2 B = B + ((int32_t)0x40000000); // B = 1 + x/2 B = B + ((int32_t)0x40000000); // Add 0.5 twice (since 1.0 does not exist in Q31) x2 = ((int32_t)x_half) * ((int32_t)x_half) * 2; // A = (x/2)^2 A = -x2; // A = -(x/2)^2 B = B + (A >> 1); // B = 1 + x/2 - 0.5*(x/2)^2 A >>= 16; A = A * A * 2; // A = (x/2)^4 t16 = (int16_t)(A >> 16); B += -20480 * t16 * 2; // B = B - 0.625*A // After this, B = 1 + x/2 - 0.5*(x/2)^2 - 0.625*(x/2)^4 A = x_half * t16 * 2; // A = (x/2)^5 t16 = (int16_t)(A >> 16); B += 28672 * t16 * 2; // B = B + 0.875*A // After this, B = 1 + x/2 - 0.5*(x/2)^2 - 0.625*(x/2)^4 + 0.875*(x/2)^5 t16 = (int16_t)(x2 >> 16); A = x_half * t16 * 2; // A = x/2^3 B = B + (A >> 1); // B = B + 0.5*A // After this, B = 1 + x/2 - 0.5*(x/2)^2 + 0.5*(x/2)^3 - 0.625*(x/2)^4 + 0.875*(x/2)^5 B = B + ((int32_t)32768); // Round off bit return B; } int32_t WebRtcSpl_Sqrt(int32_t value) { /* Algorithm: Six term Taylor Series is used here to compute the square root of a number y^0.5 = (1+x)^0.5 where x = y-1 = 1+(x/2)-0.5*((x/2)^2+0.5*((x/2)^3-0.625*((x/2)^4+0.875*((x/2)^5) 0.5 <= x < 1 Example of how the algorithm works, with ut=sqrt(in), and with in=73632 and ut=271 (even shift value case): in=73632 y= in/131072 x=y-1 t = 1 + (x/2) - 0.5*((x/2)^2) + 0.5*((x/2)^3) - 0.625*((x/2)^4) + 0.875*((x/2)^5) ut=t*(1/sqrt(2))*512 or: in=73632 in2=73632*2^14 y= in2/2^31 x=y-1 t = 1 + (x/2) - 0.5*((x/2)^2) + 0.5*((x/2)^3) - 0.625*((x/2)^4) + 0.875*((x/2)^5) ut=t*(1/sqrt(2)) ut2=ut*2^9 which gives: in = 73632 in2 = 1206386688 y = 0.56176757812500 x = -0.43823242187500 t = 0.74973506527313 ut = 0.53014274874797 ut2 = 2.714330873589594e+002 or: in=73632 in2=73632*2^14 y=in2/2 x=y-2^30 x_half=x/2^31 t = 1 + (x_half) - 0.5*((x_half)^2) + 0.5*((x_half)^3) - 0.625*((x_half)^4) + 0.875*((x_half)^5) ut=t*(1/sqrt(2)) ut2=ut*2^9 which gives: in = 73632 in2 = 1206386688 y = 603193344 x = -470548480 x_half = -0.21911621093750 t = 0.74973506527313 ut = 0.53014274874797 ut2 = 2.714330873589594e+002 */ int16_t x_norm, nshift, t16, sh; int32_t A; int16_t k_sqrt_2 = 23170; // 1/sqrt2 (==5a82) A = value; if (A == 0) return (int32_t)0; // sqrt(0) = 0 sh = WebRtcSpl_NormW32(A); // # shifts to normalize A A = WEBRTC_SPL_LSHIFT_W32(A, sh); // Normalize A if (A < (WEBRTC_SPL_WORD32_MAX - 32767)) { A = A + ((int32_t)32768); // Round off bit } else { A = WEBRTC_SPL_WORD32_MAX; } x_norm = (int16_t)(A >> 16); // x_norm = AH nshift = (sh / 2); assert(nshift >= 0); A = (int32_t)WEBRTC_SPL_LSHIFT_W32((int32_t)x_norm, 16); A = WEBRTC_SPL_ABS_W32(A); // A = abs(x_norm<<16) A = WebRtcSpl_SqrtLocal(A); // A = sqrt(A) if (2 * nshift == sh) { // Even shift value case t16 = (int16_t)(A >> 16); // t16 = AH A = k_sqrt_2 * t16 * 2; // A = 1/sqrt(2)*t16 A = A + ((int32_t)32768); // Round off A = A & ((int32_t)0x7fff0000); // Round off A >>= 15; // A = A>>16 } else { A >>= 16; // A = A>>16 } A = A & ((int32_t)0x0000ffff); A >>= nshift; // De-normalize the result. return A; }