/* * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_MATRIX_H_ #define WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_MATRIX_H_ #include #include #include #include #include "webrtc/base/checks.h" #include "webrtc/base/constructormagic.h" #include "webrtc/base/scoped_ptr.h" namespace { // Wrappers to get around the compiler warning resulting from the fact that // there's no std::sqrt overload for ints. We cast all non-complex types to // a double for the sqrt method. template T sqrt_wrapper(T x) { return sqrt(static_cast(x)); } template std::complex sqrt_wrapper(std::complex x) { return sqrt(x); } } // namespace namespace webrtc { // Matrix is a class for doing standard matrix operations on 2 dimensional // matrices of any size. Results of matrix operations are stored in the // calling object. Function overloads exist for both in-place (the calling // object is used as both an operand and the result) and out-of-place (all // operands are passed in as parameters) operations. If operand dimensions // mismatch, the program crashes. Out-of-place operations change the size of // the calling object, if necessary, before operating. // // 'In-place' operations that inherently change the size of the matrix (eg. // Transpose, Multiply on different-sized matrices) must make temporary copies // (|scratch_elements_| and |scratch_data_|) of existing data to complete the // operations. // // The data is stored contiguously. Data can be accessed internally as a flat // array, |data_|, or as an array of row pointers, |elements_|, but is // available to users only as an array of row pointers through |elements()|. // Memory for storage is allocated when a matrix is resized only if the new // size overflows capacity. Memory needed temporarily for any operations is // similarly resized only if the new size overflows capacity. // // If you pass in storage through the ctor, that storage is copied into the // matrix. TODO(claguna): albeit tricky, allow for data to be referenced // instead of copied, and owned by the user. template class Matrix { public: Matrix() : num_rows_(0), num_columns_(0) {} // Allocates space for the elements and initializes all values to zero. Matrix(int num_rows, int num_columns) : num_rows_(num_rows), num_columns_(num_columns) { Resize(); scratch_data_.resize(num_rows_ * num_columns_); scratch_elements_.resize(num_rows_); } // Copies |data| into the new Matrix. Matrix(const T* data, int num_rows, int num_columns) : num_rows_(0), num_columns_(0) { CopyFrom(data, num_rows, num_columns); scratch_data_.resize(num_rows_ * num_columns_); scratch_elements_.resize(num_rows_); } virtual ~Matrix() {} // Deep copy an existing matrix. void CopyFrom(const Matrix& other) { CopyFrom(&other.data_[0], other.num_rows_, other.num_columns_); } // Copy |data| into the Matrix. The current data is lost. void CopyFrom(const T* const data, int num_rows, int num_columns) { Resize(num_rows, num_columns); memcpy(&data_[0], data, num_rows_ * num_columns_ * sizeof(data_[0])); } Matrix& CopyFromColumn(const T* const* src, size_t column_index, int num_rows) { Resize(1, num_rows); for (int i = 0; i < num_columns_; ++i) { data_[i] = src[i][column_index]; } return *this; } void Resize(int num_rows, int num_columns) { if (num_rows != num_rows_ || num_columns != num_columns_) { num_rows_ = num_rows; num_columns_ = num_columns; Resize(); } } // Accessors and mutators. int num_rows() const { return num_rows_; } int num_columns() const { return num_columns_; } T* const* elements() { return &elements_[0]; } const T* const* elements() const { return &elements_[0]; } T Trace() { RTC_CHECK_EQ(num_rows_, num_columns_); T trace = 0; for (int i = 0; i < num_rows_; ++i) { trace += elements_[i][i]; } return trace; } // Matrix Operations. Returns *this to support method chaining. Matrix& Transpose() { CopyDataToScratch(); Resize(num_columns_, num_rows_); return Transpose(scratch_elements()); } Matrix& Transpose(const Matrix& operand) { RTC_CHECK_EQ(operand.num_rows_, num_columns_); RTC_CHECK_EQ(operand.num_columns_, num_rows_); return Transpose(operand.elements()); } template Matrix& Scale(const S& scalar) { for (size_t i = 0; i < data_.size(); ++i) { data_[i] *= scalar; } return *this; } template Matrix& Scale(const Matrix& operand, const S& scalar) { CopyFrom(operand); return Scale(scalar); } Matrix& Add(const Matrix& operand) { RTC_CHECK_EQ(num_rows_, operand.num_rows_); RTC_CHECK_EQ(num_columns_, operand.num_columns_); for (size_t i = 0; i < data_.size(); ++i) { data_[i] += operand.data_[i]; } return *this; } Matrix& Add(const Matrix& lhs, const Matrix& rhs) { CopyFrom(lhs); return Add(rhs); } Matrix& Subtract(const Matrix& operand) { RTC_CHECK_EQ(num_rows_, operand.num_rows_); RTC_CHECK_EQ(num_columns_, operand.num_columns_); for (size_t i = 0; i < data_.size(); ++i) { data_[i] -= operand.data_[i]; } return *this; } Matrix& Subtract(const Matrix& lhs, const Matrix& rhs) { CopyFrom(lhs); return Subtract(rhs); } Matrix& PointwiseMultiply(const Matrix& operand) { RTC_CHECK_EQ(num_rows_, operand.num_rows_); RTC_CHECK_EQ(num_columns_, operand.num_columns_); for (size_t i = 0; i < data_.size(); ++i) { data_[i] *= operand.data_[i]; } return *this; } Matrix& PointwiseMultiply(const Matrix& lhs, const Matrix& rhs) { CopyFrom(lhs); return PointwiseMultiply(rhs); } Matrix& PointwiseDivide(const Matrix& operand) { RTC_CHECK_EQ(num_rows_, operand.num_rows_); RTC_CHECK_EQ(num_columns_, operand.num_columns_); for (size_t i = 0; i < data_.size(); ++i) { data_[i] /= operand.data_[i]; } return *this; } Matrix& PointwiseDivide(const Matrix& lhs, const Matrix& rhs) { CopyFrom(lhs); return PointwiseDivide(rhs); } Matrix& PointwiseSquareRoot() { for (size_t i = 0; i < data_.size(); ++i) { data_[i] = sqrt_wrapper(data_[i]); } return *this; } Matrix& PointwiseSquareRoot(const Matrix& operand) { CopyFrom(operand); return PointwiseSquareRoot(); } Matrix& PointwiseAbsoluteValue() { for (size_t i = 0; i < data_.size(); ++i) { data_[i] = abs(data_[i]); } return *this; } Matrix& PointwiseAbsoluteValue(const Matrix& operand) { CopyFrom(operand); return PointwiseAbsoluteValue(); } Matrix& PointwiseSquare() { for (size_t i = 0; i < data_.size(); ++i) { data_[i] *= data_[i]; } return *this; } Matrix& PointwiseSquare(const Matrix& operand) { CopyFrom(operand); return PointwiseSquare(); } Matrix& Multiply(const Matrix& lhs, const Matrix& rhs) { RTC_CHECK_EQ(lhs.num_columns_, rhs.num_rows_); RTC_CHECK_EQ(num_rows_, lhs.num_rows_); RTC_CHECK_EQ(num_columns_, rhs.num_columns_); return Multiply(lhs.elements(), rhs.num_rows_, rhs.elements()); } Matrix& Multiply(const Matrix& rhs) { RTC_CHECK_EQ(num_columns_, rhs.num_rows_); CopyDataToScratch(); Resize(num_rows_, rhs.num_columns_); return Multiply(scratch_elements(), rhs.num_rows_, rhs.elements()); } std::string ToString() const { std::ostringstream ss; ss << std::endl << "Matrix" << std::endl; for (int i = 0; i < num_rows_; ++i) { for (int j = 0; j < num_columns_; ++j) { ss << elements_[i][j] << " "; } ss << std::endl; } ss << std::endl; return ss.str(); } protected: void SetNumRows(const int num_rows) { num_rows_ = num_rows; } void SetNumColumns(const int num_columns) { num_columns_ = num_columns; } T* data() { return &data_[0]; } const T* data() const { return &data_[0]; } const T* const* scratch_elements() const { return &scratch_elements_[0]; } // Resize the matrix. If an increase in capacity is required, the current // data is lost. void Resize() { size_t size = num_rows_ * num_columns_; data_.resize(size); elements_.resize(num_rows_); for (int i = 0; i < num_rows_; ++i) { elements_[i] = &data_[i * num_columns_]; } } // Copies data_ into scratch_data_ and updates scratch_elements_ accordingly. void CopyDataToScratch() { scratch_data_ = data_; scratch_elements_.resize(num_rows_); for (int i = 0; i < num_rows_; ++i) { scratch_elements_[i] = &scratch_data_[i * num_columns_]; } } private: int num_rows_; int num_columns_; std::vector data_; std::vector elements_; // Stores temporary copies of |data_| and |elements_| for in-place operations // where referring to original data is necessary. std::vector scratch_data_; std::vector scratch_elements_; // Helpers for Transpose and Multiply operations that unify in-place and // out-of-place solutions. Matrix& Transpose(const T* const* src) { for (int i = 0; i < num_rows_; ++i) { for (int j = 0; j < num_columns_; ++j) { elements_[i][j] = src[j][i]; } } return *this; } Matrix& Multiply(const T* const* lhs, int num_rows_rhs, const T* const* rhs) { for (int row = 0; row < num_rows_; ++row) { for (int col = 0; col < num_columns_; ++col) { T cur_element = 0; for (int i = 0; i < num_rows_rhs; ++i) { cur_element += lhs[row][i] * rhs[i][col]; } elements_[row][col] = cur_element; } } return *this; } RTC_DISALLOW_COPY_AND_ASSIGN(Matrix); }; } // namespace webrtc #endif // WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_MATRIX_H_