/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/audio_processing/transient/transient_detector.h" #include #include #include #include #include "webrtc/modules/audio_processing/transient/common.h" #include "webrtc/modules/audio_processing/transient/daubechies_8_wavelet_coeffs.h" #include "webrtc/modules/audio_processing/transient/moving_moments.h" #include "webrtc/modules/audio_processing/transient/wpd_tree.h" namespace webrtc { static const int kTransientLengthMs = 30; static const int kChunksAtStartupLeftToDelete = kTransientLengthMs / ts::kChunkSizeMs; static const float kDetectThreshold = 16.f; TransientDetector::TransientDetector(int sample_rate_hz) : samples_per_chunk_(sample_rate_hz * ts::kChunkSizeMs / 1000), last_first_moment_(), last_second_moment_(), chunks_at_startup_left_to_delete_(kChunksAtStartupLeftToDelete), reference_energy_(1.f), using_reference_(false) { assert(sample_rate_hz == ts::kSampleRate8kHz || sample_rate_hz == ts::kSampleRate16kHz || sample_rate_hz == ts::kSampleRate32kHz || sample_rate_hz == ts::kSampleRate48kHz); int samples_per_transient = sample_rate_hz * kTransientLengthMs / 1000; // Adjustment to avoid data loss while downsampling, making // |samples_per_chunk_| and |samples_per_transient| always divisible by // |kLeaves|. samples_per_chunk_ -= samples_per_chunk_ % kLeaves; samples_per_transient -= samples_per_transient % kLeaves; tree_leaves_data_length_ = samples_per_chunk_ / kLeaves; wpd_tree_.reset(new WPDTree(samples_per_chunk_, kDaubechies8HighPassCoefficients, kDaubechies8LowPassCoefficients, kDaubechies8CoefficientsLength, kLevels)); for (size_t i = 0; i < kLeaves; ++i) { moving_moments_[i].reset( new MovingMoments(samples_per_transient / kLeaves)); } first_moments_.reset(new float[tree_leaves_data_length_]); second_moments_.reset(new float[tree_leaves_data_length_]); for (int i = 0; i < kChunksAtStartupLeftToDelete; ++i) { previous_results_.push_back(0.f); } } TransientDetector::~TransientDetector() {} float TransientDetector::Detect(const float* data, size_t data_length, const float* reference_data, size_t reference_length) { assert(data && data_length == samples_per_chunk_); // TODO(aluebs): Check if these errors can logically happen and if not assert // on them. if (wpd_tree_->Update(data, samples_per_chunk_) != 0) { return -1.f; } float result = 0.f; for (size_t i = 0; i < kLeaves; ++i) { WPDNode* leaf = wpd_tree_->NodeAt(kLevels, i); moving_moments_[i]->CalculateMoments(leaf->data(), tree_leaves_data_length_, first_moments_.get(), second_moments_.get()); // Add value delayed (Use the last moments from the last call to Detect). float unbiased_data = leaf->data()[0] - last_first_moment_[i]; result += unbiased_data * unbiased_data / (last_second_moment_[i] + FLT_MIN); // Add new values. for (size_t j = 1; j < tree_leaves_data_length_; ++j) { unbiased_data = leaf->data()[j] - first_moments_[j - 1]; result += unbiased_data * unbiased_data / (second_moments_[j - 1] + FLT_MIN); } last_first_moment_[i] = first_moments_[tree_leaves_data_length_ - 1]; last_second_moment_[i] = second_moments_[tree_leaves_data_length_ - 1]; } result /= tree_leaves_data_length_; result *= ReferenceDetectionValue(reference_data, reference_length); if (chunks_at_startup_left_to_delete_ > 0) { chunks_at_startup_left_to_delete_--; result = 0.f; } if (result >= kDetectThreshold) { result = 1.f; } else { // Get proportional value. // Proportion achieved with a squared raised cosine function with domain // [0, kDetectThreshold) and image [0, 1), it's always increasing. const float horizontal_scaling = ts::kPi / kDetectThreshold; const float kHorizontalShift = ts::kPi; const float kVerticalScaling = 0.5f; const float kVerticalShift = 1.f; result = (cos(result * horizontal_scaling + kHorizontalShift) + kVerticalShift) * kVerticalScaling; result *= result; } previous_results_.pop_front(); previous_results_.push_back(result); // In the current implementation we return the max of the current result and // the previous results, so the high results have a width equals to // |transient_length|. return *std::max_element(previous_results_.begin(), previous_results_.end()); } // Looks for the highest slope and compares it with the previous ones. // An exponential transformation takes this to the [0, 1] range. This value is // multiplied by the detection result to avoid false positives. float TransientDetector::ReferenceDetectionValue(const float* data, size_t length) { if (data == NULL) { using_reference_ = false; return 1.f; } static const float kEnergyRatioThreshold = 0.2f; static const float kReferenceNonLinearity = 20.f; static const float kMemory = 0.99f; float reference_energy = 0.f; for (size_t i = 1; i < length; ++i) { reference_energy += data[i] * data[i]; } if (reference_energy == 0.f) { using_reference_ = false; return 1.f; } assert(reference_energy_ != 0); float result = 1.f / (1.f + exp(kReferenceNonLinearity * (kEnergyRatioThreshold - reference_energy / reference_energy_))); reference_energy_ = kMemory * reference_energy_ + (1.f - kMemory) * reference_energy; using_reference_ = true; return result; } } // namespace webrtc