// Copyright 2021 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. syntax = "proto3"; package google.cloud.aiplatform.v1; import "google/api/field_behavior.proto"; import "google/api/resource.proto"; import "google/cloud/aiplatform/v1/encryption_spec.proto"; import "google/cloud/aiplatform/v1/feature_monitoring_stats.proto"; import "google/cloud/aiplatform/v1/io.proto"; import "google/cloud/aiplatform/v1/job_state.proto"; import "google/cloud/aiplatform/v1/model_monitoring.proto"; import "google/protobuf/duration.proto"; import "google/protobuf/struct.proto"; import "google/protobuf/timestamp.proto"; import "google/rpc/status.proto"; import "google/api/annotations.proto"; option csharp_namespace = "Google.Cloud.AIPlatform.V1"; option go_package = "google.golang.org/genproto/googleapis/cloud/aiplatform/v1;aiplatform"; option java_multiple_files = true; option java_outer_classname = "ModelDeploymentMonitoringJobProto"; option java_package = "com.google.cloud.aiplatform.v1"; option php_namespace = "Google\\Cloud\\AIPlatform\\V1"; option ruby_package = "Google::Cloud::AIPlatform::V1"; // The Model Monitoring Objective types. enum ModelDeploymentMonitoringObjectiveType { // Default value, should not be set. MODEL_DEPLOYMENT_MONITORING_OBJECTIVE_TYPE_UNSPECIFIED = 0; // Raw feature values' stats to detect skew between Training-Prediction // datasets. RAW_FEATURE_SKEW = 1; // Raw feature values' stats to detect drift between Serving-Prediction // datasets. RAW_FEATURE_DRIFT = 2; // Feature attribution scores to detect skew between Training-Prediction // datasets. FEATURE_ATTRIBUTION_SKEW = 3; // Feature attribution scores to detect skew between Prediction datasets // collected within different time windows. FEATURE_ATTRIBUTION_DRIFT = 4; } // Represents a job that runs periodically to monitor the deployed models in an // endpoint. It will analyze the logged training & prediction data to detect any // abnormal behaviors. message ModelDeploymentMonitoringJob { option (google.api.resource) = { type: "aiplatform.googleapis.com/ModelDeploymentMonitoringJob" pattern: "projects/{project}/locations/{location}/modelDeploymentMonitoringJobs/{model_deployment_monitoring_job}" }; // The state to Specify the monitoring pipeline. enum MonitoringScheduleState { // Unspecified state. MONITORING_SCHEDULE_STATE_UNSPECIFIED = 0; // The pipeline is picked up and wait to run. PENDING = 1; // The pipeline is offline and will be scheduled for next run. OFFLINE = 2; // The pipeline is running. RUNNING = 3; } // Output only. Resource name of a ModelDeploymentMonitoringJob. string name = 1 [(google.api.field_behavior) = OUTPUT_ONLY]; // Required. The user-defined name of the ModelDeploymentMonitoringJob. // The name can be up to 128 characters long and can be consist of any UTF-8 // characters. // Display name of a ModelDeploymentMonitoringJob. string display_name = 2 [(google.api.field_behavior) = REQUIRED]; // Required. Endpoint resource name. // Format: `projects/{project}/locations/{location}/endpoints/{endpoint}` string endpoint = 3 [ (google.api.field_behavior) = REQUIRED, (google.api.resource_reference) = { type: "aiplatform.googleapis.com/Endpoint" } ]; // Output only. The detailed state of the monitoring job. // When the job is still creating, the state will be 'PENDING'. // Once the job is successfully created, the state will be 'RUNNING'. // Pause the job, the state will be 'PAUSED'. // Resume the job, the state will return to 'RUNNING'. JobState state = 4 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. Schedule state when the monitoring job is in Running state. MonitoringScheduleState schedule_state = 5 [(google.api.field_behavior) = OUTPUT_ONLY]; // Required. The config for monitoring objectives. This is a per DeployedModel config. // Each DeployedModel needs to be configured separately. repeated ModelDeploymentMonitoringObjectiveConfig model_deployment_monitoring_objective_configs = 6 [(google.api.field_behavior) = REQUIRED]; // Required. Schedule config for running the monitoring job. ModelDeploymentMonitoringScheduleConfig model_deployment_monitoring_schedule_config = 7 [(google.api.field_behavior) = REQUIRED]; // Required. Sample Strategy for logging. SamplingStrategy logging_sampling_strategy = 8 [(google.api.field_behavior) = REQUIRED]; // Alert config for model monitoring. ModelMonitoringAlertConfig model_monitoring_alert_config = 15; // YAML schema file uri describing the format of a single instance, // which are given to format this Endpoint's prediction (and explanation). // If not set, we will generate predict schema from collected predict // requests. string predict_instance_schema_uri = 9; // Sample Predict instance, same format as [PredictRequest.instances][google.cloud.aiplatform.v1.PredictRequest.instances], // this can be set as a replacement of // [ModelDeploymentMonitoringJob.predict_instance_schema_uri][google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob.predict_instance_schema_uri]. If not set, // we will generate predict schema from collected predict requests. google.protobuf.Value sample_predict_instance = 19; // YAML schema file uri describing the format of a single instance that you // want Tensorflow Data Validation (TFDV) to analyze. // // If this field is empty, all the feature data types are inferred from // [predict_instance_schema_uri][google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob.predict_instance_schema_uri], // meaning that TFDV will use the data in the exact format(data type) as // prediction request/response. // If there are any data type differences between predict instance and TFDV // instance, this field can be used to override the schema. // For models trained with Vertex AI, this field must be set as all the // fields in predict instance formatted as string. string analysis_instance_schema_uri = 16; // Output only. The created bigquery tables for the job under customer project. Customer // could do their own query & analysis. There could be 4 log tables in // maximum: // 1. Training data logging predict request/response // 2. Serving data logging predict request/response repeated ModelDeploymentMonitoringBigQueryTable bigquery_tables = 10 [(google.api.field_behavior) = OUTPUT_ONLY]; // The TTL of BigQuery tables in user projects which stores logs. // A day is the basic unit of the TTL and we take the ceil of TTL/86400(a // day). e.g. { second: 3600} indicates ttl = 1 day. google.protobuf.Duration log_ttl = 17; // The labels with user-defined metadata to organize your // ModelDeploymentMonitoringJob. // // Label keys and values can be no longer than 64 characters // (Unicode codepoints), can only contain lowercase letters, numeric // characters, underscores and dashes. International characters are allowed. // // See https://goo.gl/xmQnxf for more information and examples of labels. map labels = 11; // Output only. Timestamp when this ModelDeploymentMonitoringJob was created. google.protobuf.Timestamp create_time = 12 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. Timestamp when this ModelDeploymentMonitoringJob was updated most recently. google.protobuf.Timestamp update_time = 13 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. Timestamp when this monitoring pipeline will be scheduled to run for the // next round. google.protobuf.Timestamp next_schedule_time = 14 [(google.api.field_behavior) = OUTPUT_ONLY]; // Stats anomalies base folder path. GcsDestination stats_anomalies_base_directory = 20; // Customer-managed encryption key spec for a ModelDeploymentMonitoringJob. If // set, this ModelDeploymentMonitoringJob and all sub-resources of this // ModelDeploymentMonitoringJob will be secured by this key. EncryptionSpec encryption_spec = 21; // Output only. Only populated when the job's state is `JOB_STATE_FAILED` or // `JOB_STATE_CANCELLED`. google.rpc.Status error = 23 [(google.api.field_behavior) = OUTPUT_ONLY]; } // ModelDeploymentMonitoringBigQueryTable specifies the BigQuery table name // as well as some information of the logs stored in this table. message ModelDeploymentMonitoringBigQueryTable { // Indicates where does the log come from. enum LogSource { // Unspecified source. LOG_SOURCE_UNSPECIFIED = 0; // Logs coming from Training dataset. TRAINING = 1; // Logs coming from Serving traffic. SERVING = 2; } // Indicates what type of traffic does the log belong to. enum LogType { // Unspecified type. LOG_TYPE_UNSPECIFIED = 0; // Predict logs. PREDICT = 1; // Explain logs. EXPLAIN = 2; } // The source of log. LogSource log_source = 1; // The type of log. LogType log_type = 2; // The created BigQuery table to store logs. Customer could do their own query // & analysis. Format: // `bq://.model_deployment_monitoring_._` string bigquery_table_path = 3; } // ModelDeploymentMonitoringObjectiveConfig contains the pair of // deployed_model_id to ModelMonitoringObjectiveConfig. message ModelDeploymentMonitoringObjectiveConfig { // The DeployedModel ID of the objective config. string deployed_model_id = 1; // The objective config of for the modelmonitoring job of this deployed model. ModelMonitoringObjectiveConfig objective_config = 2; } // The config for scheduling monitoring job. message ModelDeploymentMonitoringScheduleConfig { // Required. The model monitoring job running interval. It will be rounded up to next // full hour. google.protobuf.Duration monitor_interval = 1 [(google.api.field_behavior) = REQUIRED]; } // Statistics and anomalies generated by Model Monitoring. message ModelMonitoringStatsAnomalies { // Historical Stats (and Anomalies) for a specific Feature. message FeatureHistoricStatsAnomalies { // Display Name of the Feature. string feature_display_name = 1; // Threshold for anomaly detection. ThresholdConfig threshold = 3; // Stats calculated for the Training Dataset. FeatureStatsAnomaly training_stats = 4; // A list of historical stats generated by different time window's // Prediction Dataset. repeated FeatureStatsAnomaly prediction_stats = 5; } // Model Monitoring Objective those stats and anomalies belonging to. ModelDeploymentMonitoringObjectiveType objective = 1; // Deployed Model ID. string deployed_model_id = 2; // Number of anomalies within all stats. int32 anomaly_count = 3; // A list of historical Stats and Anomalies generated for all Features. repeated FeatureHistoricStatsAnomalies feature_stats = 4; }