// Copyright 2021 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. syntax = "proto3"; package google.cloud.aiplatform.v1beta1; import "google/api/field_behavior.proto"; import "google/protobuf/struct.proto"; import "google/api/annotations.proto"; option csharp_namespace = "Google.Cloud.AIPlatform.V1Beta1"; option go_package = "google.golang.org/genproto/googleapis/cloud/aiplatform/v1beta1;aiplatform"; option java_multiple_files = true; option java_outer_classname = "ExplanationMetadataProto"; option java_package = "com.google.cloud.aiplatform.v1beta1"; option php_namespace = "Google\\Cloud\\AIPlatform\\V1beta1"; option ruby_package = "Google::Cloud::AIPlatform::V1beta1"; // Metadata describing the Model's input and output for explanation. message ExplanationMetadata { // Metadata of the input of a feature. // // Fields other than [InputMetadata.input_baselines][google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata.input_baselines] are applicable only // for Models that are using Vertex AI-provided images for Tensorflow. message InputMetadata { // Domain details of the input feature value. Provides numeric information // about the feature, such as its range (min, max). If the feature has been // pre-processed, for example with z-scoring, then it provides information // about how to recover the original feature. For example, if the input // feature is an image and it has been pre-processed to obtain 0-mean and // stddev = 1 values, then original_mean, and original_stddev refer to the // mean and stddev of the original feature (e.g. image tensor) from which // input feature (with mean = 0 and stddev = 1) was obtained. message FeatureValueDomain { // The minimum permissible value for this feature. float min_value = 1; // The maximum permissible value for this feature. float max_value = 2; // If this input feature has been normalized to a mean value of 0, // the original_mean specifies the mean value of the domain prior to // normalization. float original_mean = 3; // If this input feature has been normalized to a standard deviation of // 1.0, the original_stddev specifies the standard deviation of the domain // prior to normalization. float original_stddev = 4; } // Visualization configurations for image explanation. message Visualization { // Type of the image visualization. Only applicable to // [Integrated Gradients attribution][google.cloud.aiplatform.v1beta1.ExplanationParameters.integrated_gradients_attribution]. enum Type { // Should not be used. TYPE_UNSPECIFIED = 0; // Shows which pixel contributed to the image prediction. PIXELS = 1; // Shows which region contributed to the image prediction by outlining // the region. OUTLINES = 2; } // Whether to only highlight pixels with positive contributions, negative // or both. Defaults to POSITIVE. enum Polarity { // Default value. This is the same as POSITIVE. POLARITY_UNSPECIFIED = 0; // Highlights the pixels/outlines that were most influential to the // model's prediction. POSITIVE = 1; // Setting polarity to negative highlights areas that does not lead to // the models's current prediction. NEGATIVE = 2; // Shows both positive and negative attributions. BOTH = 3; } // The color scheme used for highlighting areas. enum ColorMap { // Should not be used. COLOR_MAP_UNSPECIFIED = 0; // Positive: green. Negative: pink. PINK_GREEN = 1; // Viridis color map: A perceptually uniform color mapping which is // easier to see by those with colorblindness and progresses from yellow // to green to blue. Positive: yellow. Negative: blue. VIRIDIS = 2; // Positive: red. Negative: red. RED = 3; // Positive: green. Negative: green. GREEN = 4; // Positive: green. Negative: red. RED_GREEN = 6; // PiYG palette. PINK_WHITE_GREEN = 5; } // How the original image is displayed in the visualization. enum OverlayType { // Default value. This is the same as NONE. OVERLAY_TYPE_UNSPECIFIED = 0; // No overlay. NONE = 1; // The attributions are shown on top of the original image. ORIGINAL = 2; // The attributions are shown on top of grayscaled version of the // original image. GRAYSCALE = 3; // The attributions are used as a mask to reveal predictive parts of // the image and hide the un-predictive parts. MASK_BLACK = 4; } // Type of the image visualization. Only applicable to // [Integrated Gradients attribution][google.cloud.aiplatform.v1beta1.ExplanationParameters.integrated_gradients_attribution]. // OUTLINES shows regions of attribution, while PIXELS shows per-pixel // attribution. Defaults to OUTLINES. Type type = 1; // Whether to only highlight pixels with positive contributions, negative // or both. Defaults to POSITIVE. Polarity polarity = 2; // The color scheme used for the highlighted areas. // // Defaults to PINK_GREEN for // [Integrated Gradients attribution][google.cloud.aiplatform.v1beta1.ExplanationParameters.integrated_gradients_attribution], // which shows positive attributions in green and negative in pink. // // Defaults to VIRIDIS for // [XRAI attribution][google.cloud.aiplatform.v1beta1.ExplanationParameters.xrai_attribution], which // highlights the most influential regions in yellow and the least // influential in blue. ColorMap color_map = 3; // Excludes attributions above the specified percentile from the // highlighted areas. Using the clip_percent_upperbound and // clip_percent_lowerbound together can be useful for filtering out noise // and making it easier to see areas of strong attribution. Defaults to // 99.9. float clip_percent_upperbound = 4; // Excludes attributions below the specified percentile, from the // highlighted areas. Defaults to 62. float clip_percent_lowerbound = 5; // How the original image is displayed in the visualization. // Adjusting the overlay can help increase visual clarity if the original // image makes it difficult to view the visualization. Defaults to NONE. OverlayType overlay_type = 6; } // Defines how a feature is encoded. Defaults to IDENTITY. enum Encoding { // Default value. This is the same as IDENTITY. ENCODING_UNSPECIFIED = 0; // The tensor represents one feature. IDENTITY = 1; // The tensor represents a bag of features where each index maps to // a feature. [InputMetadata.index_feature_mapping][google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata.index_feature_mapping] must be provided for // this encoding. For example: // ``` // input = [27, 6.0, 150] // index_feature_mapping = ["age", "height", "weight"] // ``` BAG_OF_FEATURES = 2; // The tensor represents a bag of features where each index maps to a // feature. Zero values in the tensor indicates feature being // non-existent. [InputMetadata.index_feature_mapping][google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata.index_feature_mapping] must be provided // for this encoding. For example: // ``` // input = [2, 0, 5, 0, 1] // index_feature_mapping = ["a", "b", "c", "d", "e"] // ``` BAG_OF_FEATURES_SPARSE = 3; // The tensor is a list of binaries representing whether a feature exists // or not (1 indicates existence). [InputMetadata.index_feature_mapping][google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata.index_feature_mapping] // must be provided for this encoding. For example: // ``` // input = [1, 0, 1, 0, 1] // index_feature_mapping = ["a", "b", "c", "d", "e"] // ``` INDICATOR = 4; // The tensor is encoded into a 1-dimensional array represented by an // encoded tensor. [InputMetadata.encoded_tensor_name][google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata.encoded_tensor_name] must be provided // for this encoding. For example: // ``` // input = ["This", "is", "a", "test", "."] // encoded = [0.1, 0.2, 0.3, 0.4, 0.5] // ``` COMBINED_EMBEDDING = 5; // Select this encoding when the input tensor is encoded into a // 2-dimensional array represented by an encoded tensor. // [InputMetadata.encoded_tensor_name][google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata.encoded_tensor_name] must be provided for this // encoding. The first dimension of the encoded tensor's shape is the same // as the input tensor's shape. For example: // ``` // input = ["This", "is", "a", "test", "."] // encoded = [[0.1, 0.2, 0.3, 0.4, 0.5], // [0.2, 0.1, 0.4, 0.3, 0.5], // [0.5, 0.1, 0.3, 0.5, 0.4], // [0.5, 0.3, 0.1, 0.2, 0.4], // [0.4, 0.3, 0.2, 0.5, 0.1]] // ``` CONCAT_EMBEDDING = 6; } // Baseline inputs for this feature. // // If no baseline is specified, Vertex AI chooses the baseline for this // feature. If multiple baselines are specified, Vertex AI returns the // average attributions across them in [Attribution.feature_attributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions]. // // For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape // of each baseline must match the shape of the input tensor. If a scalar is // provided, we broadcast to the same shape as the input tensor. // // For custom images, the element of the baselines must be in the same // format as the feature's input in the // [instance][google.cloud.aiplatform.v1beta1.ExplainRequest.instances][]. The schema of any single instance // may be specified via Endpoint's DeployedModels' // [Model's][google.cloud.aiplatform.v1beta1.DeployedModel.model] // [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] // [instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri]. repeated google.protobuf.Value input_baselines = 1; // Name of the input tensor for this feature. Required and is only // applicable to Vertex AI-provided images for Tensorflow. string input_tensor_name = 2; // Defines how the feature is encoded into the input tensor. Defaults to // IDENTITY. Encoding encoding = 3; // Modality of the feature. Valid values are: numeric, image. Defaults to // numeric. string modality = 4; // The domain details of the input feature value. Like min/max, original // mean or standard deviation if normalized. FeatureValueDomain feature_value_domain = 5; // Specifies the index of the values of the input tensor. // Required when the input tensor is a sparse representation. Refer to // Tensorflow documentation for more details: // https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor. string indices_tensor_name = 6; // Specifies the shape of the values of the input if the input is a sparse // representation. Refer to Tensorflow documentation for more details: // https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor. string dense_shape_tensor_name = 7; // A list of feature names for each index in the input tensor. // Required when the input [InputMetadata.encoding][google.cloud.aiplatform.v1beta1.ExplanationMetadata.InputMetadata.encoding] is BAG_OF_FEATURES, // BAG_OF_FEATURES_SPARSE, INDICATOR. repeated string index_feature_mapping = 8; // Encoded tensor is a transformation of the input tensor. Must be provided // if choosing // [Integrated Gradients attribution][google.cloud.aiplatform.v1beta1.ExplanationParameters.integrated_gradients_attribution] // or [XRAI attribution][google.cloud.aiplatform.v1beta1.ExplanationParameters.xrai_attribution] and the // input tensor is not differentiable. // // An encoded tensor is generated if the input tensor is encoded by a lookup // table. string encoded_tensor_name = 9; // A list of baselines for the encoded tensor. // // The shape of each baseline should match the shape of the encoded tensor. // If a scalar is provided, Vertex AI broadcasts to the same shape as the // encoded tensor. repeated google.protobuf.Value encoded_baselines = 10; // Visualization configurations for image explanation. Visualization visualization = 11; // Name of the group that the input belongs to. Features with the same group // name will be treated as one feature when computing attributions. Features // grouped together can have different shapes in value. If provided, there // will be one single attribution generated in // [Attribution.feature_attributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions], keyed by the group name. string group_name = 12; } // Metadata of the prediction output to be explained. message OutputMetadata { // Defines how to map [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] to // [Attribution.output_display_name][google.cloud.aiplatform.v1beta1.Attribution.output_display_name]. // // If neither of the fields are specified, // [Attribution.output_display_name][google.cloud.aiplatform.v1beta1.Attribution.output_display_name] will not be populated. oneof display_name_mapping { // Static mapping between the index and display name. // // Use this if the outputs are a deterministic n-dimensional array, e.g. a // list of scores of all the classes in a pre-defined order for a // multi-classification Model. It's not feasible if the outputs are // non-deterministic, e.g. the Model produces top-k classes or sort the // outputs by their values. // // The shape of the value must be an n-dimensional array of strings. The // number of dimensions must match that of the outputs to be explained. // The [Attribution.output_display_name][google.cloud.aiplatform.v1beta1.Attribution.output_display_name] is populated by locating in the // mapping with [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index]. google.protobuf.Value index_display_name_mapping = 1; // Specify a field name in the prediction to look for the display name. // // Use this if the prediction contains the display names for the outputs. // // The display names in the prediction must have the same shape of the // outputs, so that it can be located by [Attribution.output_index][google.cloud.aiplatform.v1beta1.Attribution.output_index] for // a specific output. string display_name_mapping_key = 2; } // Name of the output tensor. Required and is only applicable to Vertex // AI provided images for Tensorflow. string output_tensor_name = 3; } // Required. Map from feature names to feature input metadata. Keys are the name of the // features. Values are the specification of the feature. // // An empty InputMetadata is valid. It describes a text feature which has the // name specified as the key in [ExplanationMetadata.inputs][google.cloud.aiplatform.v1beta1.ExplanationMetadata.inputs]. The baseline // of the empty feature is chosen by Vertex AI. // // For Vertex AI-provided Tensorflow images, the key can be any friendly // name of the feature. Once specified, // [featureAttributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions] are keyed by // this key (if not grouped with another feature). // // For custom images, the key must match with the key in // [instance][google.cloud.aiplatform.v1beta1.ExplainRequest.instances]. map inputs = 1 [(google.api.field_behavior) = REQUIRED]; // Required. Map from output names to output metadata. // // For Vertex AI-provided Tensorflow images, keys can be any user defined // string that consists of any UTF-8 characters. // // For custom images, keys are the name of the output field in the prediction // to be explained. // // Currently only one key is allowed. map outputs = 2 [(google.api.field_behavior) = REQUIRED]; // Points to a YAML file stored on Google Cloud Storage describing the format // of the [feature attributions][google.cloud.aiplatform.v1beta1.Attribution.feature_attributions]. // The schema is defined as an OpenAPI 3.0.2 [Schema // Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). // AutoML tabular Models always have this field populated by Vertex AI. // Note: The URI given on output may be different, including the URI scheme, // than the one given on input. The output URI will point to a location where // the user only has a read access. string feature_attributions_schema_uri = 3; }