// Copyright 2020 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. syntax = "proto3"; package google.cloud.automl.v1beta1; import "google/cloud/automl/v1beta1/classification.proto"; import "google/api/annotations.proto"; option go_package = "google.golang.org/genproto/googleapis/cloud/automl/v1beta1;automl"; option java_multiple_files = true; option java_outer_classname = "TextProto"; option java_package = "com.google.cloud.automl.v1beta1"; option php_namespace = "Google\\Cloud\\AutoMl\\V1beta1"; option ruby_package = "Google::Cloud::AutoML::V1beta1"; // Dataset metadata for classification. message TextClassificationDatasetMetadata { // Required. Type of the classification problem. ClassificationType classification_type = 1; } // Model metadata that is specific to text classification. message TextClassificationModelMetadata { // Output only. Classification type of the dataset used to train this model. ClassificationType classification_type = 3; } // Dataset metadata that is specific to text extraction message TextExtractionDatasetMetadata { } // Model metadata that is specific to text extraction. message TextExtractionModelMetadata { // Indicates the scope of model use case. // // * `default`: Use to train a general text extraction model. Default value. // // * `health_care`: Use to train a text extraction model that is tuned for // healthcare applications. string model_hint = 3; } // Dataset metadata for text sentiment. message TextSentimentDatasetMetadata { // Required. A sentiment is expressed as an integer ordinal, where higher value // means a more positive sentiment. The range of sentiments that will be used // is between 0 and sentiment_max (inclusive on both ends), and all the values // in the range must be represented in the dataset before a model can be // created. // sentiment_max value must be between 1 and 10 (inclusive). int32 sentiment_max = 1; } // Model metadata that is specific to text sentiment. message TextSentimentModelMetadata { }