import argparse import importlib.util spec = importlib.util.spec_from_file_location('whisper_to_coreml', 'models/convert-whisper-to-coreml.py') whisper_to_coreml = importlib.util.module_from_spec(spec) spec.loader.exec_module(whisper_to_coreml) from whisper import load_model from copy import deepcopy import torch from transformers import WhisperForConditionalGeneration from huggingface_hub import metadata_update # https://github.com/bayartsogt-ya/whisper-multiple-hf-datasets/blob/main/src/multiple_datasets/hub_default_utils.py WHISPER_MAPPING = { "layers": "blocks", "fc1": "mlp.0", "fc2": "mlp.2", "final_layer_norm": "mlp_ln", "layers": "blocks", ".self_attn.q_proj": ".attn.query", ".self_attn.k_proj": ".attn.key", ".self_attn.v_proj": ".attn.value", ".self_attn_layer_norm": ".attn_ln", ".self_attn.out_proj": ".attn.out", ".encoder_attn.q_proj": ".cross_attn.query", ".encoder_attn.k_proj": ".cross_attn.key", ".encoder_attn.v_proj": ".cross_attn.value", ".encoder_attn_layer_norm": ".cross_attn_ln", ".encoder_attn.out_proj": ".cross_attn.out", "decoder.layer_norm.": "decoder.ln.", "encoder.layer_norm.": "encoder.ln_post.", "embed_tokens": "token_embedding", "encoder.embed_positions.weight": "encoder.positional_embedding", "decoder.embed_positions.weight": "decoder.positional_embedding", "layer_norm": "ln_post", } # https://github.com/bayartsogt-ya/whisper-multiple-hf-datasets/blob/main/src/multiple_datasets/hub_default_utils.py def rename_keys(s_dict): keys = list(s_dict.keys()) for key in keys: new_key = key for k, v in WHISPER_MAPPING.items(): if k in key: new_key = new_key.replace(k, v) print(f"{key} -> {new_key}") s_dict[new_key] = s_dict.pop(key) return s_dict # https://github.com/bayartsogt-ya/whisper-multiple-hf-datasets/blob/main/src/multiple_datasets/hub_default_utils.py def convert_hf_whisper(hf_model_name_or_path: str, whisper_state_path: str): transformer_model = WhisperForConditionalGeneration.from_pretrained(hf_model_name_or_path) config = transformer_model.config # first build dims dims = { 'n_mels': config.num_mel_bins, 'n_vocab': config.vocab_size, 'n_audio_ctx': config.max_source_positions, 'n_audio_state': config.d_model, 'n_audio_head': config.encoder_attention_heads, 'n_audio_layer': config.encoder_layers, 'n_text_ctx': config.max_target_positions, 'n_text_state': config.d_model, 'n_text_head': config.decoder_attention_heads, 'n_text_layer': config.decoder_layers } state_dict = deepcopy(transformer_model.model.state_dict()) state_dict = rename_keys(state_dict) torch.save({"dims": dims, "model_state_dict": state_dict}, whisper_state_path) # Ported from models/convert-whisper-to-coreml.py if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model-name", type=str, help="name of model to convert (e.g. tiny, tiny.en, base, base.en, small, small.en, medium, medium.en, large-v1, large-v2, large-v3)", required=True) parser.add_argument("--model-path", type=str, help="path to the model (e.g. if published on HuggingFace: Oblivion208/whisper-tiny-cantonese)", required=True) parser.add_argument("--encoder-only", type=bool, help="only convert encoder", default=False) parser.add_argument("--quantize", type=bool, help="quantize weights to F16", default=False) parser.add_argument("--optimize-ane", type=bool, help="optimize for ANE execution (currently broken)", default=False) args = parser.parse_args() if args.model_name not in ["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large-v1", "large-v2", "large-v3"]: raise ValueError("Invalid model name") pt_target_path = f"models/hf-{args.model_name}.pt" convert_hf_whisper(args.model_path, pt_target_path) whisper = load_model(pt_target_path).cpu() hparams = whisper.dims print(hparams) if args.optimize_ane: whisperANE = whisper_to_coreml.WhisperANE(hparams).eval() whisperANE.load_state_dict(whisper.state_dict()) encoder = whisperANE.encoder decoder = whisperANE.decoder else: encoder = whisper.encoder decoder = whisper.decoder # Convert encoder encoder = whisper_to_coreml.convert_encoder(hparams, encoder, quantize=args.quantize) encoder.save(f"models/coreml-encoder-{args.model_name}.mlpackage") if args.encoder_only is False: # Convert decoder decoder = whisper_to_coreml.convert_decoder(hparams, decoder, quantize=args.quantize) decoder.save(f"models/coreml-decoder-{args.model_name}.mlpackage") print("done converting")