{ "arguments": { "left": { "type_value": "Array", "default_python": "None", "default_rust": "None", "description": "Left data array used to calculate cross-covariance matrix. Used only if `data` not provided." }, "right": { "type_value": "Array", "default_python": "None", "default_rust": "None", "description": "Right data array used to calculate cross-covariance matrix. Used only if `data` not provided." }, "data": { "type_value": "Array", "default_python": "None", "default_rust": "None", "description": "2D data array used to construct covariance matrix." } }, "id": "DPCovariance", "name": "dp_covariance", "options": { "mechanism": { "type_proto": "string", "type_rust": "String", "default_python": "\"Laplace\"", "default_rust": "String::from(\"Laplace\")", "description": "Privatizing mechanism to use. One of [`Laplace`, `Gaussian`]" }, "privacy_usage": { "type_proto": "repeated PrivacyUsage", "type_rust": "Vec", "default_python": "None", "description": "Object describing the type and amount of privacy to be used for the mechanism release." }, "finite_sample_correction": { "type_proto": "bool", "type_rust": "bool", "default_python": "True", "default_rust": "true", "description": "Whether or not to use the finite sample correction (Bessel's correction)." } }, "return": { "type_value": "Array", "description": "Flattened covariance or cross-covariance matrix." }, "description": "Calculate differentially private covariance.\n\nIf `data` argument is provided as a 2D array, calculate covariance matrix. Otherwise, `left` and `right` 1D arrays are used to calculate a cross-covariance matrix between elements of the two arrays.", "proto_id": 9 }