{ "arguments": { "data": { "type_value": "Array" } }, "id": "DPVariance", "name": "dp_variance", "options": { "mechanism": { "type_proto": "string", "type_rust": "String", "default_python": "\"Laplace\"", "default_rust": "String::from(\"Laplace\")", "description": "Privatizing mechanism to use. One of [`Laplace`, `Gaussian`]" }, "privacy_usage": { "type_proto": "repeated PrivacyUsage", "type_rust": "Vec", "default_python": "None", "description": "Object describing the type and amount of privacy to be used for the mechanism release." }, "finite_sample_correction": { "type_proto": "bool", "type_rust": "bool", "default_python": "True", "default_rust": "true", "description": "Whether or not to use the finite sample correction (Bessel's correction)." } }, "return": { "type_value": "Array", "description": "Differentially private sample variance for each column of the data." }, "description": "Returns a differentially private estimate of the variance for each column of the data.", "proto_id": 18 }