use criterion::{black_box, criterion_group, criterion_main, Criterion}; use whittaker_eilers::{CrossValidationResult, OptimisedSmoothResult, WhittakerSmoother}; fn new_y_whittaker(y: &Vec) -> Vec { WhittakerSmoother::new(2e4, 2, y.len(), None, None) .unwrap() .smooth(y) .unwrap() } #[cfg(feature = "rayon")] fn new_parallel_y_whittaker(y: &Vec>) -> Vec> { let smoother = WhittakerSmoother::new(2e4, 2, y[0].len(), None, None).unwrap(); smoother .smooth_parallel(y) .into_iter() .map(|x| x.unwrap()) .collect() } fn new_y_whittaker_cross_validate(y: &Vec) -> CrossValidationResult { WhittakerSmoother::new(2e4, 2, y.len(), None, None) .unwrap() .smooth_and_cross_validate(y) .unwrap() } fn new_y_whittaker_optimal(y: &Vec) -> OptimisedSmoothResult { WhittakerSmoother::new(2e4, 2, y.len(), None, None) .unwrap() .smooth_optimal(y, true) .unwrap() } fn new_x_y_whittaker(x: &Vec, y: &Vec) -> Vec { WhittakerSmoother::new(2e4, 2, y.len(), Some(x), None) .unwrap() .smooth(y) .unwrap() } fn new_x_y_weights_whittaker(x: &Vec, y: &Vec, weights: &Vec) -> Vec { WhittakerSmoother::new(2e4, 2, y.len(), Some(x), Some(weights)) .unwrap() .smooth(y) .unwrap() } fn criterion_benchmark(c: &mut Criterion) { let wood_data_vec: Vec = WOOD_DATASET.to_vec(); let wood_x_vec: Vec = (0..wood_data_vec.len()).map(|x| x as f64).collect(); let weights = vec![1.0; wood_data_vec.len()]; let repeat_wood_data = (0..100000) .into_iter() .map(|_| wood_data_vec.clone()) .collect(); // let repeat_wood_data = [wood_data_vec.as_slice(); 100000]; let reusable_smoother = WhittakerSmoother::new( 2e4, 2, wood_data_vec.len(), Some(&wood_x_vec), Some(&weights), ) .unwrap(); c.bench_function("Whittaker Wood Y Only", |b| { b.iter(|| new_y_whittaker(black_box(&wood_data_vec))) }); c.bench_function("Whittaker Wood Cross validate", |b| { b.iter(|| new_y_whittaker_cross_validate(black_box(&wood_data_vec))) }); c.bench_function("Whittaker Wood Cross validate Optimal", |b| { b.iter(|| new_y_whittaker_optimal(black_box(&wood_data_vec))) }); c.bench_function("Whittaker Wood X and Y", |b| { b.iter(|| new_x_y_whittaker(black_box(&wood_x_vec), black_box(&wood_data_vec))) }); c.bench_function("Whittaker Wood X, Y, and weights", |b| { b.iter(|| { new_x_y_weights_whittaker( black_box(&wood_x_vec), black_box(&wood_data_vec), black_box(&weights), ) }) }); c.bench_function("Whittaker Wood X, Y, and weights reused", |b| { b.iter(|| reusable_smoother.smooth(&wood_data_vec).unwrap()) }); #[cfg(feature = "rayon")] c.bench_function("Whittaker Wood Y Only Parallel", |b| { b.iter(|| new_parallel_y_whittaker(black_box(&repeat_wood_data))) }); } criterion_group!(benches, criterion_benchmark); criterion_main!(benches); pub const WOOD_DATASET: &[f64] = &[ 106.0, 111.0, 111.0, 107.0, 105.0, 107.0, 110.0, 108.0, 111.0, 119.0, 117.0, 107.0, 105.0, 107.0, 109.0, 105.0, 104.0, 102.0, 108.0, 113.0, 113.0, 107.0, 103.0, 103.0, 98.0, 102.0, 103.0, 104.0, 105.0, 105.0, 105.0, 101.0, 103.0, 107.0, 109.0, 104.0, 100.0, 103.0, 100.0, 105.0, 102.0, 105.0, 106.0, 107.0, 104.0, 107.0, 109.0, 108.0, 111.0, 107.0, 107.0, 106.0, 107.0, 102.0, 102.0, 101.0, 103.0, 103.0, 103.0, 100.0, 101.0, 101.0, 100.0, 102.0, 101.0, 96.0, 96.0, 98.0, 104.0, 107.0, 107.0, 102.0, 105.0, 101.0, 105.0, 110.0, 111.0, 111.0, 100.0, 102.0, 102.0, 107.0, 112.0, 114.0, 113.0, 108.0, 106.0, 103.0, 103.0, 101.0, 103.0, 106.0, 107.0, 106.0, 107.0, 107.0, 104.0, 111.0, 117.0, 118.0, 115.0, 107.0, 110.0, 117.0, 121.0, 122.0, 123.0, 119.0, 117.0, 118.0, 115.0, 111.0, 108.0, 107.0, 105.0, 105.0, 105.0, 103.0, 105.0, 107.0, 109.0, 110.0, 111.0, 108.0, 107.0, 106.0, 108.0, 107.0, 105.0, 102.0, 101.0, 102.0, 101.0, 97.0, 100.0, 105.0, 108.0, 108.0, 105.0, 103.0, 103.0, 100.0, 103.0, 106.0, 107.0, 97.0, 98.0, 100.0, 101.0, 97.0, 99.0, 101.0, 104.0, 107.0, 109.0, 111.0, 109.0, 103.0, 105.0, 102.0, 108.0, 113.0, 113.0, 108.0, 107.0, 102.0, 106.0, 106.0, 106.0, 103.0, 97.0, 103.0, 107.0, 102.0, 107.0, 111.0, 110.0, 107.0, 103.0, 99.0, 97.0, 99.0, 100.0, 99.0, 100.0, 99.0, 100.0, 99.0, 99.0, 98.0, 100.0, 102.0, 102.0, 106.0, 112.0, 113.0, 109.0, 107.0, 105.0, 97.0, 105.0, 110.0, 113.0, 108.0, 101.0, 95.0, 99.0, 100.0, 97.0, 92.0, 98.0, 101.0, 103.0, 101.0, 92.0, 95.0, 91.0, 86.0, 86.0, 87.0, 93.0, 97.0, 95.0, 91.0, 86.0, 87.0, 88.0, 88.0, 89.0, 87.0, 90.0, 88.0, 87.0, 89.0, 90.0, 90.0, 87.0, 86.0, 88.0, 83.0, 85.0, 85.0, 87.0, 91.0, 93.0, 96.0, 95.0, 89.0, 89.0, 85.0, 88.0, 89.0, 92.0, 95.0, 91.0, 87.0, 83.0, 83.0, 82.0, 81.0, 81.0, 80.0, 81.0, 82.0, 80.0, 76.0, 72.0, 73.0, 75.0, 77.0, 75.0, 80.0, 81.0, 81.0, 81.0, 81.0, 81.0, 84.0, 86.0, 87.0, 88.0, 86.0, 84.0, 82.0, 80.0, 79.0, 82.0, 82.0, 76.0, 81.0, 83.0, 82.0, 81.0, 75.0, 78.0, 78.0, 78.0, 79.0, 82.0, 82.0, 84.0, 82.0, 77.0, 77.0, 77.0, 75.0, 77.0, 73.0, 75.0, 76.0, 80.0, 77.0, 68.0, 71.0, 71.0, 68.0, 67.0, 69.0, 72.0, 82.0, ];