use plotly::{common::Mode, Layout, Plot, Scatter}; use rand::thread_rng; use rand_distr::{Distribution, Uniform}; use whittaker_eilers::WhittakerSmoother; fn basic_smooth(x_input: &Vec, y_input: &Vec, lambda: f64, order: usize) { let smoothed_y_only = WhittakerSmoother::new(lambda, order, y_input.len(), None, None) .unwrap() .smooth(&y_input) .unwrap(); let raw_points = Scatter::new(x_input.clone(), y_input.to_vec()) .mode(Mode::Markers) .name("Raw Wood Data"); let smoothed_points = Scatter::new(x_input.clone(), smoothed_y_only) .mode(Mode::Lines) .name("Whittaker Smoothed"); let mut plot = Plot::new(); plot.add_trace(raw_points); plot.add_trace(smoothed_points); let layout = Layout::new().title("Basic smoothing of equally spaced Y"); plot.set_layout(layout); plot.show(); } fn smooth_with_x(x_input_with_noise: &Vec, y_input: &Vec, lambda: f64, order: usize) { let smoothed_y_only = WhittakerSmoother::new( lambda, order, y_input.len(), Some(&x_input_with_noise), None, ) .unwrap() .smooth(&y_input) .unwrap(); let raw_points = Scatter::new(x_input_with_noise.clone(), y_input.to_vec()) .mode(Mode::Markers) .name("Raw Wood Data"); let smoothed_points = Scatter::new(x_input_with_noise.clone(), smoothed_y_only) .mode(Mode::Lines) .name("Whittaker Smoothed"); let mut plot = Plot::new(); plot.add_trace(raw_points); plot.add_trace(smoothed_points); let layout = Layout::new().title("Basic smoothing of Y with arbitrary X"); plot.set_layout(layout); plot.show(); } fn smooth_with_weights( x_input_with_noise: &Vec, y_input: &Vec, weights: &Vec, lambda: f64, order: usize, ) { let smoothed_y_only = WhittakerSmoother::new( lambda, order, y_input.len(), Some(&x_input_with_noise), Some(&weights), ) .unwrap() .smooth(&y_input) .unwrap(); let raw_points = Scatter::new(x_input_with_noise.clone(), y_input.to_vec()) .mode(Mode::Markers) .name("Raw Wood Data"); let smoothed_points = Scatter::new(x_input_with_noise.clone(), smoothed_y_only) .mode(Mode::Lines) .name("Whittaker Smoothed With Weights"); let mut plot = Plot::new(); plot.add_trace(raw_points); plot.add_trace(smoothed_points); let layout = Layout::new().title("Basic smoothing of Y with arbitrary X and weights"); plot.set_layout(layout); plot.show(); } fn smooth_and_interpolate( x_input: &Vec, y_input: &Vec, weights: &Vec, lambda: f64, order: usize, ) { let smoothed_y_only = WhittakerSmoother::new(lambda, order, y_input.len(), Some(&x_input), Some(&weights)) .unwrap() .smooth(&y_input) .unwrap(); let raw_points = Scatter::new(x_input.clone(), y_input.to_vec()) .mode(Mode::Markers) .name("Raw Wood Data"); let smoothed_points = Scatter::new(x_input.clone(), smoothed_y_only) .mode(Mode::Lines) .name("Whittaker Smoothed With Weights"); let mut plot = Plot::new(); plot.add_trace(raw_points); plot.add_trace(smoothed_points); let layout = Layout::new().title("Smoothing and Interpolation using weights"); plot.set_layout(layout); plot.show(); } fn smooth_cross_validate(x_input: &Vec, y_input: &Vec, weights: &Vec, order: usize) { let optimal_smooth_with_error = WhittakerSmoother::new(100.0, order, y_input.len(), Some(x_input), Some(weights)) .unwrap() .smooth_optimal(&y_input, true) .unwrap(); let raw_points = Scatter::new(x_input.clone(), y_input.to_vec()) .mode(Mode::Markers) .name("Raw Wood Data"); let smoothed_points = Scatter::new( x_input.clone(), optimal_smooth_with_error.get_optimal().smoothed, ) .mode(Mode::Lines) .name("Whittaker Optimally Smoothed"); let mut plot = Plot::new(); plot.add_trace(raw_points); plot.add_trace(smoothed_points); let layout = Layout::new().title("Whittaker optimal cross validation"); plot.set_layout(layout); plot.show(); let smoothed_points = Scatter::new( optimal_smooth_with_error .validation_results .iter() .map(|x| x.lambda.log10()) .collect(), optimal_smooth_with_error .validation_results .iter() .map(|x| x.cross_validation_error) .collect(), ) .mode(Mode::Lines) .name("Cross validation error"); let mut plot = Plot::new(); plot.add_trace(smoothed_points); let layout = Layout::new().title("Cross Validation Error"); plot.set_layout(layout); plot.show(); } fn main() { let mut y_input = WOOD_DATASET.to_vec(); let x_input = (0..y_input.len()).map(|x| x as f64).collect::>(); let mut rng = thread_rng(); let x_noise_distribution = Uniform::new(0.0, 0.7); let weights_distribution = Uniform::new(0.0, 1.0); let x_input_with_noise = (0..y_input.len()) .map(|x| (x as f64) + x_noise_distribution.sample(&mut rng)) .collect::>(); let mut weights = weights_distribution .sample_iter(&mut rng) .take(y_input.len()) .collect::>(); let lambda = 2e4; let order = 2; basic_smooth(&x_input, &y_input, lambda, order); smooth_with_x(&x_input_with_noise, &y_input, lambda, order); smooth_with_weights(&x_input_with_noise, &y_input, &weights, lambda, order); smooth_cross_validate(&x_input, &y_input, &weights, order); for i in 30..60 { y_input[i] = 0.0; // Set y to some arbitrary value we want to interpolate. weights[i] = 0.0; // Set weights to 0 for data we want to interpolate. } smooth_and_interpolate(&x_input, &y_input, &weights, lambda, order); } pub const WOOD_DATASET: &[f64] = &[ 106.0, 111.0, 111.0, 107.0, 105.0, 107.0, 110.0, 108.0, 111.0, 119.0, 117.0, 107.0, 105.0, 107.0, 109.0, 105.0, 104.0, 102.0, 108.0, 113.0, 113.0, 107.0, 103.0, 103.0, 98.0, 102.0, 103.0, 104.0, 105.0, 105.0, 105.0, 101.0, 103.0, 107.0, 109.0, 104.0, 100.0, 103.0, 100.0, 105.0, 102.0, 105.0, 106.0, 107.0, 104.0, 107.0, 109.0, 108.0, 111.0, 107.0, 107.0, 106.0, 107.0, 102.0, 102.0, 101.0, 103.0, 103.0, 103.0, 100.0, 101.0, 101.0, 100.0, 102.0, 101.0, 96.0, 96.0, 98.0, 104.0, 107.0, 107.0, 102.0, 105.0, 101.0, 105.0, 110.0, 111.0, 111.0, 100.0, 102.0, 102.0, 107.0, 112.0, 114.0, 113.0, 108.0, 106.0, 103.0, 103.0, 101.0, 103.0, 106.0, 107.0, 106.0, 107.0, 107.0, 104.0, 111.0, 117.0, 118.0, 115.0, 107.0, 110.0, 117.0, 121.0, 122.0, 123.0, 119.0, 117.0, 118.0, 115.0, 111.0, 108.0, 107.0, 105.0, 105.0, 105.0, 103.0, 105.0, 107.0, 109.0, 110.0, 111.0, 108.0, 107.0, 106.0, 108.0, 107.0, 105.0, 102.0, 101.0, 102.0, 101.0, 97.0, 100.0, 105.0, 108.0, 108.0, 105.0, 103.0, 103.0, 100.0, 103.0, 106.0, 107.0, 97.0, 98.0, 100.0, 101.0, 97.0, 99.0, 101.0, 104.0, 107.0, 109.0, 111.0, 109.0, 103.0, 105.0, 102.0, 108.0, 113.0, 113.0, 108.0, 107.0, 102.0, 106.0, 106.0, 106.0, 103.0, 97.0, 103.0, 107.0, 102.0, 107.0, 111.0, 110.0, 107.0, 103.0, 99.0, 97.0, 99.0, 100.0, 99.0, 100.0, 99.0, 100.0, 99.0, 99.0, 98.0, 100.0, 102.0, 102.0, 106.0, 112.0, 113.0, 109.0, 107.0, 105.0, 97.0, 105.0, 110.0, 113.0, 108.0, 101.0, 95.0, 99.0, 100.0, 97.0, 92.0, 98.0, 101.0, 103.0, 101.0, 92.0, 95.0, 91.0, 86.0, 86.0, 87.0, 93.0, 97.0, 95.0, 91.0, 86.0, 87.0, 88.0, 88.0, 89.0, 87.0, 90.0, 88.0, 87.0, 89.0, 90.0, 90.0, 87.0, 86.0, 88.0, 83.0, 85.0, 85.0, 87.0, 91.0, 93.0, 96.0, 95.0, 89.0, 89.0, 85.0, 88.0, 89.0, 92.0, 95.0, 91.0, 87.0, 83.0, 83.0, 82.0, 81.0, 81.0, 80.0, 81.0, 82.0, 80.0, 76.0, 72.0, 73.0, 75.0, 77.0, 75.0, 80.0, 81.0, 81.0, 81.0, 81.0, 81.0, 84.0, 86.0, 87.0, 88.0, 86.0, 84.0, 82.0, 80.0, 79.0, 82.0, 82.0, 76.0, 81.0, 83.0, 82.0, 81.0, 75.0, 78.0, 78.0, 78.0, 79.0, 82.0, 82.0, 84.0, 82.0, 77.0, 77.0, 77.0, 75.0, 77.0, 73.0, 75.0, 76.0, 80.0, 77.0, 68.0, 71.0, 71.0, 68.0, 67.0, 69.0, 72.0, 82.0, ];