/* * wiringPi: * Arduino compatable (ish) Wiring library for the Raspberry Pi * Copyright (c) 2012 Gordon Henderson * Additional code for pwmSetClock by Chris Hall * * Thanks to code samples from Gert Jan van Loo and the * BCM2835 ARM Peripherals manual, however it's missing * the clock section /grr/mutter/ *********************************************************************** * This file is part of wiringPi: * https://projects.drogon.net/raspberry-pi/wiringpi/ * * wiringPi is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * wiringPi is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with wiringPi. * If not, see . *********************************************************************** */ // Revisions: // 19 Jul 2012: // Moved to the LGPL // Added an abstraction layer to the main routines to save a tiny // bit of run-time and make the clode a little cleaner (if a little // larger) // Added waitForInterrupt code // Added piHiPri code // // 9 Jul 2012: // Added in support to use the /sys/class/gpio interface. // 2 Jul 2012: // Fixed a few more bugs to do with range-checking when in GPIO mode. // 11 Jun 2012: // Fixed some typos. // Added c++ support for the .h file // Added a new function to allow for using my "pin" numbers, or native // GPIO pin numbers. // Removed my busy-loop delay and replaced it with a call to delayMicroseconds // // 02 May 2012: // Added in the 2 UART pins // Change maxPins to numPins to more accurately reflect purpose #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "softPwm.h" #include "softTone.h" #include "wiringPi.h" #ifndef TRUE #define TRUE (1==1) #define FALSE (1==2) #endif // Environment Variables #define ENV_DEBUG "WIRINGPI_DEBUG" #define ENV_CODES "WIRINGPI_CODES" // Mask for the bottom 64 pins which belong to the Banana Pro // The others are available for the other devices #define PI_GPIO_MASK (0xFFFFFFC0) struct wiringPiNodeStruct *wiringPiNodes = NULL ; // BCM Magic #define BCM_PASSWORD 0x5A000000 // The BCM2835 has 54 GPIO pins. // BCM2835 data sheet, Page 90 onwards. // There are 6 control registers, each control the functions of a block // of 10 pins. // Each control register has 10 sets of 3 bits per GPIO pin - the ALT values // // 000 = GPIO Pin X is an input // 001 = GPIO Pin X is an output // 100 = GPIO Pin X takes alternate function 0 // 101 = GPIO Pin X takes alternate function 1 // 110 = GPIO Pin X takes alternate function 2 // 111 = GPIO Pin X takes alternate function 3 // 011 = GPIO Pin X takes alternate function 4 // 010 = GPIO Pin X takes alternate function 5 // // So the 3 bits for port X are: // X / 10 + ((X % 10) * 3) // Port function select bits #define FSEL_INPT 0b000 #define FSEL_OUTP 0b001 #define FSEL_ALT0 0b100 #define FSEL_ALT1 0b101 #define FSEL_ALT2 0b110 #define FSEL_ALT3 0b111 #define FSEL_ALT4 0b011 #define FSEL_ALT5 0b010 // Access from ARM Running Linux // Taken from Gert/Doms code. Some of this is not in the manual // that I can find )-: #define BCM2708_PERI_BASE 0x20000000 #define GPIO_PADS (BCM2708_PERI_BASE + 0x00100000) #define CLOCK_BASE (BCM2708_PERI_BASE + 0x00101000) #define GPIO_BASE (BCM2708_PERI_BASE + 0x00200000) #define GPIO_TIMER (BCM2708_PERI_BASE + 0x0000B000) #define GPIO_PWM (BCM2708_PERI_BASE + 0x0020C000) #define PAGE_SIZE (4*1024) #define BLOCK_SIZE (4*1024) // PWM // Word offsets into the PWM control region #define PWM_CONTROL 0 #define PWM_STATUS 1 #define PWM0_RANGE 4 #define PWM0_DATA 5 #define PWM1_RANGE 8 #define PWM1_DATA 9 // Clock regsiter offsets #define PWMCLK_CNTL 40 #define PWMCLK_DIV 41 #define PWM0_MS_MODE 0x0080 // Run in MS mode #define PWM0_USEFIFO 0x0020 // Data from FIFO #define PWM0_REVPOLAR 0x0010 // Reverse polarity #define PWM0_OFFSTATE 0x0008 // Ouput Off state #define PWM0_REPEATFF 0x0004 // Repeat last value if FIFO empty #define PWM0_SERIAL 0x0002 // Run in serial mode #define PWM0_ENABLE 0x0001 // Channel Enable #define PWM1_MS_MODE 0x8000 // Run in MS mode #define PWM1_USEFIFO 0x2000 // Data from FIFO #define PWM1_REVPOLAR 0x1000 // Reverse polarity #define PWM1_OFFSTATE 0x0800 // Ouput Off state #define PWM1_REPEATFF 0x0400 // Repeat last value if FIFO empty #define PWM1_SERIAL 0x0200 // Run in serial mode #define PWM1_ENABLE 0x0100 // Channel Enable // Timer // Word offsets #define TIMER_LOAD (0x400 >> 2) #define TIMER_VALUE (0x404 >> 2) #define TIMER_CONTROL (0x408 >> 2) #define TIMER_IRQ_CLR (0x40C >> 2) #define TIMER_IRQ_RAW (0x410 >> 2) #define TIMER_IRQ_MASK (0x414 >> 2) #define TIMER_RELOAD (0x418 >> 2) #define TIMER_PRE_DIV (0x41C >> 2) #define TIMER_COUNTER (0x420 >> 2) // Locals to hold pointers to the hardware static volatile uint32_t *gpio ; static volatile uint32_t *pwm ; static volatile uint32_t *clk ; static volatile uint32_t *pads ; #ifdef USE_TIMER static volatile uint32_t *timer ; static volatile uint32_t *timerIrqRaw ; #endif /*add for BananaPro by LeMaker team*/ // for mmap BananaPro #define MAX_PIN_NUM (0x40) //64 #define SUNXI_GPIO_BASE (0x01C20800) #define MAP_SIZE (4096*2) #define MAP_MASK (MAP_SIZE - 1) //sunxi_pwm #define SUNXI_PWM_BASE (0x01c20e00) #define SUNXI_PWM_CTRL_REG (SUNXI_PWM_BASE) #define SUNXI_PWM_CH0_PERIOD (SUNXI_PWM_BASE + 0x4) #define SUNXI_PWM_CH1_PERIOD (SUNXI_PWM_BASE + 0x8) #define SUNXI_PWM_CH0_EN (1 << 4) #define SUNXI_PWM_CH0_ACT_STA (1 << 5) #define SUNXI_PWM_SCLK_CH0_GATING (1 << 6) #define SUNXI_PWM_CH0_MS_MODE (1 << 7) //pulse mode #define SUNXI_PWM_CH0_PUL_START (1 << 8) #define SUNXI_PWM_CH1_EN (1 << 19) #define SUNXI_PWM_CH1_ACT_STA (1 << 20) #define SUNXI_PWM_SCLK_CH1_GATING (1 << 21) #define SUNXI_PWM_CH1_MS_MODE (1 << 22) //pulse mode #define SUNXI_PWM_CH1_PUL_START (1 << 23) #define PWM_CLK_DIV_120 0 #define PWM_CLK_DIV_180 1 #define PWM_CLK_DIV_240 2 #define PWM_CLK_DIV_360 3 #define PWM_CLK_DIV_480 4 #define PWM_CLK_DIV_12K 8 #define PWM_CLK_DIV_24K 9 #define PWM_CLK_DIV_36K 10 #define PWM_CLK_DIV_48K 11 #define PWM_CLK_DIV_72K 12 #define GPIO_PADS_BP (0x00100000) #define CLOCK_BASE_BP (0x00101000) // addr should 4K*n // #define GPIO_BASE_BP (SUNXI_GPIO_BASE) #define GPIO_BASE_BP (0x01C20000) #define GPIO_TIMER_BP (0x0000B000) #define GPIO_PWM_BP (0x01c20000) //need 4k*n static int wiringPinMode = WPI_MODE_UNINITIALISED ; int wiringPiCodes = FALSE ; /*end 2014.09.18*/ // Data for use with the boardId functions. // The order of entries here to correspond with the PI_MODEL_X // and PI_VERSION_X defines in wiringPi.h // Only intended for the gpio command - use at your own risk! const char *piModelNames [6] = { "Unknown", "Model A", "Model B", "Model B+", "Compute Module", "Banana Pro", //add for BananaPro by LeMaker team } ; const char *piRevisionNames [5] = { "Unknown", "1", "1.1", "1.2", "2", } ; const char *piMakerNames [5] = { "Unknown", "Egoman", "Sony", "Qusda", "LeMaker", //add for BananaPro by LeMaker team } ; // Time for easy calculations static uint64_t epochMilli, epochMicro ; // Misc static int wiringPiMode = WPI_MODE_UNINITIALISED ; static volatile int pinPass = -1 ; static pthread_mutex_t pinMutex ; // Debugging & Return codes int wiringPiDebug = FALSE; // guenter FALSE ; int wiringPiReturnCodes = FALSE ; // sysFds: // Map a file descriptor from the /sys/class/gpio/gpioX/value static int sysFds [64] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, } ; // ISR Data static void (*isrFunctions [64])(void) ; // Doing it the Arduino way with lookup tables... // Yes, it's probably more innefficient than all the bit-twidling, but it // does tend to make it all a bit clearer. At least to me! // pinToGpio: // Take a Wiring pin (0 through X) and re-map it to the BCM_GPIO pin // Cope for 3 different board revisions here. static int *pinToGpio ; // Revision 1, 1.1: static int pinToGpioR1 [64] = { 17, 18, 21, 22, 23, 24, 25, 4, // From the Original Wiki - GPIO 0 through 7: wpi 0 - 7 0, 1, // I2C - SDA1, SCL1 wpi 8 - 9 8, 7, // SPI - CE1, CE0 wpi 10 - 11 10, 9, 11, // SPI - MOSI, MISO, SCLK wpi 12 - 14 14, 15, // UART - Tx, Rx wpi 15 - 16 // Padding: -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 31 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 47 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 63 } ; // Revision 2: static int pinToGpioR2 [64] = { 17, 18, 27, 22, 23, 24, 25, 4, // From the Original Wiki - GPIO 0 through 7: wpi 0 - 7 2, 3, // I2C - SDA0, SCL0 wpi 8 - 9 8, 7, // SPI - CE1, CE0 wpi 10 - 11 10, 9, 11, // SPI - MOSI, MISO, SCLK wpi 12 - 14 14, 15, // UART - Tx, Rx wpi 15 - 16 28, 29, 30, 31, // Rev 2: New GPIOs 8 though 11 wpi 17 - 20 5, 6, 13, 19, 26, // B+ wpi 21, 22, 23, 24, 25 12, 16, 20, 21, // B+ wpi 26, 27, 28, 29 0, 1, // B+ wpi 30, 31 // Padding: -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 47 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 63 } ; // physToGpio: // Take a physical pin (1 through 26) and re-map it to the BCM_GPIO pin // Cope for 2 different board revisions here. // Also add in the P5 connector, so the P5 pins are 3,4,5,6, so 53,54,55,56 static int *physToGpio ; static int physToGpioR1 [64] = { -1, // 0 -1, -1, // 1, 2 0, -1, 1, -1, 4, 14, -1, 15, 17, 18, 21, -1, 22, 23, -1, 24, 10, -1, 9, 25, 11, 8, -1, 7, // 25, 26 -1, -1, -1, -1, -1, // ... 31 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 47 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 63 } ; static int physToGpioR2 [64] = { -1, // 0 -1, -1, // 1, 2 2, -1, 3, -1, 4, 14, -1, 15, 17, 18, 27, -1, 22, 23, -1, 24, 10, -1, 9, 25, 11, 8, -1, 7, // 25, 26 // B+ 0, 1, 5, -1, 6, 12, 13, -1, 19, 16, 26, 20, -1, 21, // the P5 connector on the Rev 2 boards: -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 28, 29, 30, 31, -1, -1, -1, -1, -1, -1, -1, -1, } ; // gpioToGPFSEL: // Map a BCM_GPIO pin to it's Function Selection // control port. (GPFSEL 0-5) // Groups of 10 - 3 bits per Function - 30 bits per port static uint8_t gpioToGPFSEL [] = { 0,0,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1, 2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,3,3, 4,4,4,4,4,4,4,4,4,4, 5,5,5,5,5,5,5,5,5,5, } ; // gpioToShift // Define the shift up for the 3 bits per pin in each GPFSEL port static uint8_t gpioToShift [] = { 0,3,6,9,12,15,18,21,24,27, 0,3,6,9,12,15,18,21,24,27, 0,3,6,9,12,15,18,21,24,27, 0,3,6,9,12,15,18,21,24,27, 0,3,6,9,12,15,18,21,24,27, } ; // gpioToGPSET: // (Word) offset to the GPIO Set registers for each GPIO pin static uint8_t gpioToGPSET [] = { 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, } ; // gpioToGPCLR: // (Word) offset to the GPIO Clear registers for each GPIO pin static uint8_t gpioToGPCLR [] = { 10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11, } ; // gpioToGPLEV: // (Word) offset to the GPIO Input level registers for each GPIO pin static uint8_t gpioToGPLEV [] = { 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13, 14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14, } ; #ifdef notYetReady // gpioToEDS // (Word) offset to the Event Detect Status static uint8_t gpioToEDS [] = { 16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16, 17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17, } ; // gpioToREN // (Word) offset to the Rising edge ENable register static uint8_t gpioToREN [] = { 19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19,19, 20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20, } ; // gpioToFEN // (Word) offset to the Falling edgde ENable register static uint8_t gpioToFEN [] = { 22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,22, 23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,23, } ; #endif // GPPUD: // GPIO Pin pull up/down register #define GPPUD 37 // gpioToPUDCLK // (Word) offset to the Pull Up Down Clock regsiter static uint8_t gpioToPUDCLK [] = { 38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38,38, 39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39,39, } ; // gpioToPwmALT // the ALT value to put a GPIO pin into PWM mode static uint8_t gpioToPwmALT [] = { 0, 0, 0, 0, 0, 0, 0, 0, // 0 -> 7 0, 0, 0, 0, FSEL_ALT0, FSEL_ALT0, 0, 0, // 8 -> 15 0, 0, FSEL_ALT5, FSEL_ALT5, 0, 0, 0, 0, // 16 -> 23 0, 0, 0, 0, 0, 0, 0, 0, // 24 -> 31 0, 0, 0, 0, 0, 0, 0, 0, // 32 -> 39 FSEL_ALT0, FSEL_ALT0, 0, 0, 0, FSEL_ALT0, 0, 0, // 40 -> 47 0, 0, 0, 0, 0, 0, 0, 0, // 48 -> 55 0, 0, 0, 0, 0, 0, 0, 0, // 56 -> 63 } ; // gpioToPwmPort // The port value to put a GPIO pin into PWM mode static uint8_t gpioToPwmPort [] = { 0, 0, 0, 0, 0, 0, 0, 0, // 0 -> 7 0, 0, 0, 0, PWM0_DATA, PWM1_DATA, 0, 0, // 8 -> 15 0, 0, PWM0_DATA, PWM1_DATA, 0, 0, 0, 0, // 16 -> 23 0, 0, 0, 0, 0, 0, 0, 0, // 24 -> 31 0, 0, 0, 0, 0, 0, 0, 0, // 32 -> 39 PWM0_DATA, PWM1_DATA, 0, 0, 0, PWM1_DATA, 0, 0, // 40 -> 47 0, 0, 0, 0, 0, 0, 0, 0, // 48 -> 55 0, 0, 0, 0, 0, 0, 0, 0, // 56 -> 63 } ; // gpioToGpClkALT: // ALT value to put a GPIO pin into GP Clock mode. // On the Pi we can really only use BCM_GPIO_4 and BCM_GPIO_21 // for clocks 0 and 1 respectively, however I'll include the full // list for completeness - maybe one day... #define GPIO_CLOCK_SOURCE 1 // gpioToGpClkALT0: static uint8_t gpioToGpClkALT0 [] = { 0, 0, 0, 0, FSEL_ALT0, FSEL_ALT0, FSEL_ALT0, 0, // 0 -> 7 0, 0, 0, 0, 0, 0, 0, 0, // 8 -> 15 0, 0, 0, 0, FSEL_ALT5, FSEL_ALT5, 0, 0, // 16 -> 23 0, 0, 0, 0, 0, 0, 0, 0, // 24 -> 31 FSEL_ALT0, 0, FSEL_ALT0, 0, 0, 0, 0, 0, // 32 -> 39 0, 0, FSEL_ALT0, FSEL_ALT0, FSEL_ALT0, 0, 0, 0, // 40 -> 47 0, 0, 0, 0, 0, 0, 0, 0, // 48 -> 55 0, 0, 0, 0, 0, 0, 0, 0, // 56 -> 63 } ; // gpioToClk: // (word) Offsets to the clock Control and Divisor register static uint8_t gpioToClkCon [] = { -1, -1, -1, -1, 28, 30, 32, -1, // 0 -> 7 -1, -1, -1, -1, -1, -1, -1, -1, // 8 -> 15 -1, -1, -1, -1, 28, 30, -1, -1, // 16 -> 23 -1, -1, -1, -1, -1, -1, -1, -1, // 24 -> 31 28, -1, 28, -1, -1, -1, -1, -1, // 32 -> 39 -1, -1, 28, 30, 28, -1, -1, -1, // 40 -> 47 -1, -1, -1, -1, -1, -1, -1, -1, // 48 -> 55 -1, -1, -1, -1, -1, -1, -1, -1, // 56 -> 63 } ; static uint8_t gpioToClkDiv [] = { -1, -1, -1, -1, 29, 31, 33, -1, // 0 -> 7 -1, -1, -1, -1, -1, -1, -1, -1, // 8 -> 15 -1, -1, -1, -1, 29, 31, -1, -1, // 16 -> 23 -1, -1, -1, -1, -1, -1, -1, -1, // 24 -> 31 29, -1, 29, -1, -1, -1, -1, -1, // 32 -> 39 -1, -1, 29, 31, 29, -1, -1, -1, // 40 -> 47 -1, -1, -1, -1, -1, -1, -1, -1, // 48 -> 55 -1, -1, -1, -1, -1, -1, -1, -1, // 56 -> 63 } ; /*add for BananaPro by LeMaker team*/ //map tableb for BP static int *physToPin ; static int upDnConvert[3] = {7, 7, 5}; /* guenter static int pinToGpio_BP [64] = { 275,259, 274,273, 244,245, 272,226, 53,52, 266,270, 268,269, 267,228, 229, -1, -1, -1, -1, 35, 277,45, 39, 37, 276,38, 44,40, 257,256, // ...31 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 47 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,// ... 63 } ; guenter ende */ // WiringPiNr. gegeben .. -> Array GPIOx orange pi guenter neu // A ab 0x00, B ab 0x20, C ab 0x40, D ab 0x50 ...... // 00 - 31 = PA00-PA31 // 32 - 63 = PB00-PB31 // 64 - 95 = PC00-PC31 static int pinToGpio_BP [64] = { -1,110, -1,-1, 68,71, 6,7, 8,200, 9,-1, 10,201, 20,198, 199, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,-1, -1,-1, // ...31 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 47 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,// ... 63 } ; // guenter neu ende // guenter ... dieses braucht nicht umgewandelt werden, da kein /sys/class/gpio auf orange pi static int pinTobcm_BP [64] = { #if 0 257,256, //map to BCM GPIO0,1 53,52, //map to BCM GPIO2,3 226,35, //map to BCM GPIO4,5 277,270, //map to BCM GPIO6,7 266,269, //map to BCM GPIO8,9 268,267, //map to BCM GPIO10,11 276,45, //map to BCM GPIO12,13 228,229, //map to BCM GPIO14,15 38,275, //map to BCM GPIO16,17 259,39, //map to BCM GPIO18,19 44, 40, //map to BCM GPIO20,21 273,244, //map to BCM GPIO22,23 245,272, //map to BCM GPIO24,25 37, 274, //map to BCM GPIO26,27 #endif -1, -1, -1, -1, 6, 7, //map to BCM GPIO4,5 8, -1, //map to BCM GPIO6,7 -1, -1, -1, -1, 200, 9, //map to BCM GPIO12,13 -1, -1, //map to BCM GPIO14,15 201, -1, //map to BCM GPIO16,17 110, 10, //map to BCM GPIO18,19 198,199, //map to BCM GPIO20,21 -1, 68, //map to BCM GPIO22,23 71, -1, //map to BCM GPIO24,25 20, -1, //map to BCM GPIO26,27 -1,-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 29... 44 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, //45... 60 -1, -1, -1, -1 // ...63 } ; /* guenter static int physToGpio_BP [64] = { -1, // 0 -1, -1, //1, 2 53, -1, //3, 4 52, -1, //5, 6 226, 228, //7, 8 -1, 229, //9, 10 275, 259, //11, 12 274, -1, //13, 14 273, 244, //15, 16 -1, 245, //17, 18 268, -1, //19, 20 269, 272, //21, 22 267, 266, //23, 24 -1, 270, //25, 26 257, 256, //27, 28 35, -1, //29, 30 277, 276, //31, 32 45, -1, //33, 34 39, 38, //35, 36 37, 44, //37, 38 -1, 40, //39, 40 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, //41-> 55 -1, -1, -1, -1, -1, -1, -1, -1 // 56-> 63 } ; guenter ende */ //guenter anfang static int physToGpio_BP [64] = { -1, // 0 -1, -1, //1, 2 -1, -1, //3, 4 -1, -1, //5, 6 6, -1, //7, 8 -1, -1, //9, 10 -1, 110, //11, 12 -1, -1, //13, 14 -1, 68, //15, 16 -1, 71, //17, 18 -1, -1, //19, 20 -1, -1, //21, 22 -1, -1, //23, 24 -1, -1, //25, 26 -1, -1, //27, 28 7, -1, //29, 30 8, 200, //31, 32 9, -1, //33, 34 10, 201, //35, 36 20, 198, //37, 38 -1, 199, //39, 40 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, //41-> 55 -1, -1, -1, -1, -1, -1, -1, -1 // 56-> 63 } ; // guenter ende static int syspin [64] = { -1, -1, 2, 3, 4, 5, 6, 7, //GPIO0,1 used to I2C 8, 9, 10, 11, 12,13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, } ; static int edge [64] = { -1, -1, -1, -1, 4, -1, -1, 7, //support the INT 8, 9, 10, 11, -1,-1, 14, 15, -1, 17, -1, -1, -1, -1, 22, 23, 24, 25, -1, 27, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, } ; static int pinToGpioR3 [64] = { 17, 18, 27, 22, 23, 24, 25, 4, // From the Original Wiki - GPIO 0 through 7: wpi 0 - 7 2, 3, // I2C - SDA0, SCL0 wpi 8 - 9 8, 7, // SPI - CE1, CE0 wpi 10 - 11 10, 9, 11, // SPI - MOSI, MISO, SCLK wpi 12 - 14 14, 15, // UART - Tx, Rx wpi 15 - 16 -1, -1, -1, -1, // Rev 2: New GPIOs 8 though 11 wpi 17 - 20 5, 6, 13, 19, 26, // B+ wpi 21, 22, 23, 24, 25 12, 16, 20, 21, // B+ wpi 26, 27, 28, 29 0, 1, // B+ wpi 30, 31 // Padding: -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 47 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 63 } ; static int physToGpioR3 [64] =//head num map to BCMpin { -1, // 0 -1, -1, // 1, 2 2, -1, 3, -1, 4, 14, -1, 15, 17, 18, 27, -1, 22, 23, -1, 24, 10, -1, 9, 25, 11, 8, -1, 7, // 25, 26 0, 1, //27, 28 5, -1, //29, 30 6, 12, //31, 32 13, -1, //33, 34 19, 16, //35, 36 26, 20, //37, 38 -1, 21, //39, 40 // Padding: -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 56 -1, -1, -1, -1, -1, -1, -1, // ... 63 } ; static int physToPinR3 [64] = //return wiringPI pin { -1, // 0 -1, -1, // 1, 2 8, -1, //3, 4 9, -1, //5, 6 7, 15, //7, 8 -1, 16, //9,10 0, 1, //11,12 2, -1, //13,14 3, 4, //15,16 -1, 5, //17,18 12, -1, //19,20 13, 6, //21,22 14, 10, //23, 24 -1, 11, // 25, 26 30, 31, //27, 28 21, -1, //29, 30 22, 26, //31, 32 23, -1, //33, 34 24, 27, //35, 36 25, 28, //37, 38 -1, 29, //39, 40 // Padding: -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // ... 56 -1, -1, -1, -1, -1, -1, -1, // ... 63 } ; /* guenter raus static int BP_PIN_MASK[9][32] = //[BANK] [INDEX] { {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},//PA {-1,-1,-1, 3,-1, 5, 6, 7, 8,-1,-1,-1,12,13,-1,-1,-1,-1,-1,-1,20,21,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},//PB {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},//PC {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},//PD {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},//PE {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},//PF {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},//PG {-1,-1, 2,-1, 4, 5,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,20,21,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},//PH {0,1,-1,3,-1,-1,-1,-1,-1,-1,10,11,12,13,14,-1,16,17,18,19,20,21,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},//PI }; guenter ende */ // guenter anfang ... welche pins werden freigegeben .. -1 = gesperrt static int BP_PIN_MASK[9][32] = //[BANK] [INDEX] { {-1,-1,-1,-1,-1,-1, 6, 7, 8, 9,10,-1,-1,-1,-1,-1,-1,-1,-1,-1,20,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},//PA {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},//PB {-1,-1,-1,-1, 4,-1,-1, 7,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},//PC {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,14,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},//PD {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},//PE {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},//PF {-1,-1,-1,-1,-1,-1, 6, 7, 8, 9,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},//PG {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},//PH {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,},//PI }; // guenter ende static int version=0; static int pwmmode=0; /*end 20140918*/ /* * Functions ********************************************************************************* */ /*add for BananaPro by LeMaker team*/ uint32_t readl(uint32_t addr) { uint32_t val = 0; uint32_t mmap_base = (addr & ~MAP_MASK); uint32_t mmap_seek = ((addr - mmap_base) >> 2); val = *(gpio + mmap_seek); return val; } void writel(uint32_t val, uint32_t addr) { uint32_t mmap_base = (addr & ~MAP_MASK); uint32_t mmap_seek = ((addr - mmap_base) >> 2); *(gpio + mmap_seek) = val; } //pwm for BananaPro only for pwm1 void sunxi_pwm_set_enable(int en) { int val = 0; val = readl(SUNXI_PWM_CTRL_REG); if(en) { val |= (SUNXI_PWM_CH1_EN | SUNXI_PWM_SCLK_CH1_GATING); } else { val &= ~(SUNXI_PWM_CH1_EN | SUNXI_PWM_SCLK_CH1_GATING); } if (wiringPiDebug) printf(">>function%s,no:%d,enable? :0x%x\n",__func__, __LINE__, val); writel(val, SUNXI_PWM_CTRL_REG); delay (1) ; } void sunxi_pwm_set_mode(int mode) { int val = 0; val = readl(SUNXI_PWM_CTRL_REG); mode &= 1; //cover the mode to 0 or 1 if(mode) { //pulse mode val |= ( SUNXI_PWM_CH1_MS_MODE|SUNXI_PWM_CH1_PUL_START); pwmmode=1; } else { //cycle mode val &= ~( SUNXI_PWM_CH1_MS_MODE); pwmmode=0; } val |= ( SUNXI_PWM_CH1_ACT_STA); if (wiringPiDebug) printf(">>function%s,no:%d,mode? :0x%x\n",__func__, __LINE__, val); writel(val, SUNXI_PWM_CTRL_REG); delay (1) ; } void sunxi_pwm_set_clk(int clk) { int val = 0; // sunxi_pwm_set_enable(0); val = readl(SUNXI_PWM_CTRL_REG); //clear clk to 0 val &= 0xf801f0; val |= ((clk & 0xf) << 15); //todo check wether clk is invalid or not writel(val, SUNXI_PWM_CTRL_REG); sunxi_pwm_set_enable(1); if (wiringPiDebug) printf(">>function%s,no:%d,clk? :0x%x\n",__func__, __LINE__, val); delay (1) ; } /** * ch0 and ch1 set the same,16 bit period and 16 bit act */ uint32_t sunxi_pwm_get_period(void) { uint32_t period_cys = 0; period_cys = readl(SUNXI_PWM_CH1_PERIOD);//get ch1 period_cys period_cys &= 0xffff0000;//get period_cys period_cys = period_cys >> 16; if (wiringPiDebug) printf(">>func:%s,no:%d,period/range:%d",__func__,__LINE__,period_cys); delay (1) ; return period_cys; } uint32_t sunxi_pwm_get_act(void) { uint32_t period_act = 0; period_act = readl(SUNXI_PWM_CH1_PERIOD);//get ch1 period_cys period_act &= 0xffff;//get period_act if (wiringPiDebug) printf(">>func:%s,no:%d,period/range:%d",__func__,__LINE__,period_act); delay (1) ; return period_act; } void sunxi_pwm_set_period(int period_cys) { uint32_t val = 0; //all clear to 0 if (wiringPiDebug) printf(">>func:%s no:%d\n",__func__,__LINE__); period_cys &= 0xffff; //set max period to 2^16 period_cys = period_cys << 16; val = readl(SUNXI_PWM_CH1_PERIOD); val &=0x0000ffff; period_cys |= val; writel(period_cys, SUNXI_PWM_CH1_PERIOD); delay (1) ; } void sunxi_pwm_set_act(int act_cys) { uint32_t per0 = 0; //keep period the same, clear act_cys to 0 first if (wiringPiDebug) printf(">>func:%s no:%d\n",__func__,__LINE__); per0 = readl(SUNXI_PWM_CH1_PERIOD); per0 &= 0xffff0000; act_cys &= 0xffff; act_cys |= per0; writel(act_cys,SUNXI_PWM_CH1_PERIOD); delay (1) ; } int sunxi_get_gpio_mode(int pin) { uint32_t regval = 0; int bank = pin >> 5; int index = pin - (bank << 5); int offset = ((index - ((index >> 3) << 3)) << 2); uint32_t reval=0; uint32_t phyaddr = SUNXI_GPIO_BASE + (bank * 36) + ((index >> 3) << 2); if (wiringPiDebug) printf("func:%s pin:%d, bank:%d index:%d phyaddr:0x%x\n",__func__, pin , bank,index,phyaddr); if(BP_PIN_MASK[bank][index] != -1) { regval = readl(phyaddr); if (wiringPiDebug) printf("read reg val: 0x%x offset:%d return: %d\n",regval,offset,reval); // reval=regval &(reval+(7 << offset)); reval=(regval>>offset)&7; if (wiringPiDebug) printf("read reg val: 0x%x offset:%d return: %d\n",regval,offset,reval); return reval; } else { printf("line:%dpin number error\n",__LINE__); return reval; } } void sunxi_set_gpio_mode(int pin,int mode) { uint32_t regval = 0; int bank = pin >> 5; int index = pin - (bank << 5); int offset = ((index - ((index >> 3) << 3)) << 2); uint32_t phyaddr = SUNXI_GPIO_BASE + (bank * 36) + ((index >> 3) << 2); if (wiringPiDebug) printf("func:%s pin:%d, MODE:%d bank:%d index:%d phyaddr:0x%x\n",__func__, pin , mode,bank,index,phyaddr); if(BP_PIN_MASK[bank][index] != -1) { regval = readl(phyaddr); if (wiringPiDebug) printf("read reg val: 0x%x offset:%d\n",regval,offset); if(INPUT == mode) { regval &= ~(7 << offset); writel(regval, phyaddr); regval = readl(phyaddr); if (wiringPiDebug) printf("Input mode set over reg val: 0x%x\n",regval); } else if(OUTPUT == mode) { regval &= ~(7 << offset); regval |= (1 << offset); if (wiringPiDebug) printf("Out mode ready set val: 0x%x\n",regval); writel(regval, phyaddr); regval = readl(phyaddr); if (wiringPiDebug) printf("Out mode set over reg val: 0x%x\n",regval); } else if(PWM_OUTPUT == mode) { // set pin PWMx to pwm mode regval &= ~(7 << offset); regval |= (0x2 << offset); if (wiringPiDebug) printf(">>>>>line:%d PWM mode ready to set val: 0x%x\n",__LINE__,regval); writel(regval, phyaddr); delayMicroseconds (200); regval = readl(phyaddr); if (wiringPiDebug) printf("<<<<> 5; int index = pin - (bank << 5); uint32_t phyaddr = SUNXI_GPIO_BASE + (bank * 36) + 0x10; // +0x10 -> data reg if (wiringPiDebug) printf("func:%s pin:%d, value:%d bank:%d index:%d phyaddr:0x%x\n",__func__, pin , value,bank,index,phyaddr); if(BP_PIN_MASK[bank][index] != -1) { regval = readl(phyaddr); if (wiringPiDebug) printf("befor write reg val: 0x%x,index:%d\n",regval,index); if(0 == value) { regval &= ~(1 << index); writel(regval, phyaddr); regval = readl(phyaddr); if (wiringPiDebug) printf("LOW val set over reg val: 0x%x\n",regval); } else { regval |= (1 << index); writel(regval, phyaddr); regval = readl(phyaddr); if (wiringPiDebug) printf("HIGH val set over reg val: 0x%x\n",regval); } } else { printf("pin number error\n"); } return ; } int sunxi_digitalRead(int pin) { uint32_t regval = 0; int bank = pin >> 5; int index = pin - (bank << 5); uint32_t phyaddr = SUNXI_GPIO_BASE + (bank * 36) + 0x10; // +0x10 -> data reg if (wiringPiDebug) printf("func:%s pin:%d,bank:%d index:%d phyaddr:0x%x\n",__func__, pin,bank,index,phyaddr); if(BP_PIN_MASK[bank][index] != -1) { regval = readl(phyaddr); regval = regval >> index; regval &= 1; if (wiringPiDebug) printf("***** read reg val: 0x%x,bank:%d,index:%d,line:%d\n",regval,bank,index,__LINE__); return regval; } else { printf("pin number error\n"); return regval; } } void sunxi_pullUpDnControl (int pin, int pud) { uint32_t regval = 0; int bank = pin >> 5; int index = pin - (bank << 5); int sub = index >> 4; int sub_index = index - 16*sub; uint32_t phyaddr = SUNXI_GPIO_BASE + (bank * 36) + 0x1c + sub*4; // +0x10 -> pullUpDn reg if (wiringPiDebug) printf("func:%s pin:%d,bank:%d index:%d sub:%d phyaddr:0x%x\n",__func__, pin,bank,index,sub,phyaddr); if(BP_PIN_MASK[bank][index] != -1) { //PI13~PI21 need check again regval = readl(phyaddr); if (wiringPiDebug) printf("pullUpDn reg:0x%x, pud:0x%x sub_index:%d\n", regval, pud, sub_index); regval &= ~(3 << (sub_index << 1)); regval |= (pud << (sub_index << 1)); if (wiringPiDebug) printf("pullUpDn val ready to set:0x%x\n", regval); writel(regval, phyaddr); regval = readl(phyaddr); if (wiringPiDebug) printf("pullUpDn reg after set:0x%x addr:0x%x\n", regval, phyaddr); } else { printf("pin number error\n"); } delay (1) ; return ; } /*end 2014.09.18*/ /* * wiringPiFailure: * Fail. Or not. ********************************************************************************* */ int wiringPiFailure (int fatal, const char *message, ...) { va_list argp ; char buffer [1024] ; if (!fatal && wiringPiReturnCodes) return -1 ; va_start (argp, message) ; vsnprintf (buffer, 1023, message, argp) ; va_end (argp) ; fprintf (stderr, "%s", buffer) ; exit (EXIT_FAILURE) ; return 0 ; } /* * piBoardRev: * Return a number representing the hardware revision of the board. * * Revision 1 really means the early Model B's. * Revision 2 is everything else - it covers the B, B+ and CM. * * Seems there are some boards with 0000 in them (mistake in manufacture) * So the distinction between boards that I can see is: * 0000 - Error * 0001 - Not used * 0002 - Model B, Rev 1, 256MB, Egoman * 0003 - Model B, Rev 1.1, 256MB, Egoman, Fuses/D14 removed. * 0004 - Model B, Rev 2, 256MB, Sony * 0005 - Model B, Rev 2, 256MB, Qisda * 0006 - Model B, Rev 2, 256MB, Egoman * 0007 - Model A, Rev 2, 256MB, Egoman * 0008 - Model A, Rev 2, 256MB, Sony * 0009 - Model A, Rev 2, 256MB, Qisda * 000d - Model B, Rev 2, 512MB, Egoman * 000e - Model B, Rev 2, 512MB, Sony * 000f - Model B, Rev 2, 512MB, Qisda * 0010 - Model B+, Rev 1.2, 512MB, Sony * 0011 - Pi CM, Rev 1.2, 512MB, Sony * * A small thorn is the olde style overvolting - that will add in * 1000000 * * The Pi compute module has an revision of 0011 - since we only check the * last digit, then it's 1, therefore it'll default to not 2 or 3 for a * Rev 1, so will appear as a Rev 2. This is fine for the most part, but * we'll properly detect the Compute Module later and adjust accordingly. * ********************************************************************************* */ static void piBoardRevOops (const char *why) { fprintf (stderr, "piBoardRev: Unable to determine board revision from /proc/cpuinfo\n") ; fprintf (stderr, " -> %s\n", why) ; fprintf (stderr, " -> You may want to check:\n") ; fprintf (stderr, " -> http://www.lemaker.org/\n") ; /*modify for BananaPro by LeMmaker team*/ exit (EXIT_FAILURE) ; } /*add for BananaPro by LeMaker team*/ int isA20(void) { FILE *cpuFd ; char line [120] ; char *d; if ((cpuFd = fopen ("/proc/cpuinfo", "r")) == NULL) piBoardRevOops ("Unable to open /proc/cpuinfo") ; while (fgets (line, 120, cpuFd) != NULL) { if (strncmp (line, "Hardware", 8) == 0) break ; } fclose (cpuFd) ; if (strncmp (line, "Hardware", 8) != 0) piBoardRevOops ("No \"Hardware\" line") ; for (d = &line [strlen (line) - 1] ; (*d == '\n') || (*d == '\r') ; --d) *d = 0 ; if (wiringPiDebug) printf ("piboardRev: Hardware string: %s\n", line) ; if (strstr(line,"sun7i") != NULL) { if (wiringPiDebug) printf ("Hardware:%s\n",line) ; return 1 ; } else { if (wiringPiDebug) printf ("Hardware:%s\n",line) ; return 0 ; } } /*end 2014.09.18*/ /*add for H3 guenter*/ int isH3(void) { FILE *cpuFd ; char line [120] ; char *d; if ((cpuFd = fopen ("/proc/cpuinfo", "r")) == NULL) piBoardRevOops ("Unable to open /proc/cpuinfo") ; while (fgets (line, 120, cpuFd) != NULL) { if (strncmp (line, "Hardware", 8) == 0) break ; } fclose (cpuFd) ; if (strncmp (line, "Hardware", 8) != 0) piBoardRevOops ("No \"Hardware\" line") ; for (d = &line [strlen (line) - 1] ; (*d == '\n') || (*d == '\r') ; --d) *d = 0 ; if (wiringPiDebug) printf ("piboardRev: Hardware string: %s\n", line) ; if (strstr(line,"sun8i") != NULL) //guenter von sun7i auf sun8i { if (wiringPiDebug) printf ("Hardware:%s\n",line) ; return 1 ; } else { if (wiringPiDebug) printf ("Hardware:%s\n",line) ; return 0 ; } } /* guenter ende */ int piBoardRev (void) { FILE *cpuFd ; char line [120] ; char *c ; static int boardRev = -1 ; /*add for orange pi guenter */ if(isH3()) //guenter if(isA20()) { version = BPRVER; if (wiringPiDebug) printf ("piboardRev: %d\n", version) ; return BPRVER ; } /*end 2014.09.18*/ if (boardRev != -1) // No point checking twice return boardRev ; if ((cpuFd = fopen ("/proc/cpuinfo", "r")) == NULL) piBoardRevOops ("Unable to open /proc/cpuinfo") ; while (fgets (line, 120, cpuFd) != NULL) if (strncmp (line, "Revision", 8) == 0) break ; fclose (cpuFd) ; if (strncmp (line, "Revision", 8) != 0) piBoardRevOops ("No \"Revision\" line") ; // Chomp trailing CR/NL for (c = &line [strlen (line) - 1] ; (*c == '\n') || (*c == '\r') ; --c) *c = 0 ; if (wiringPiDebug) printf ("piboardRev: Revision string: %s\n", line) ; // Scan to first digit for (c = line ; *c ; ++c) if (isdigit (*c)) break ; if (!isdigit (*c)) piBoardRevOops ("No numeric revision string") ; // Make sure its long enough if (strlen (c) < 4) piBoardRevOops ("Bogus \"Revision\" line (too small)") ; // If you have overvolted the Pi, then it appears that the revision // has 100000 added to it! if (wiringPiDebug) if (strlen (c) != 4) printf ("piboardRev: This Pi has/is overvolted!\n") ; // Isolate last 4 characters: c = c + strlen (c) - 4 ; if (wiringPiDebug) printf ("piboardRev: last4Chars are: \"%s\"\n", c) ; if ( (strcmp (c, "0002") == 0) || (strcmp (c, "0003") == 0)) boardRev = 1 ; else boardRev = 2 ; if (wiringPiDebug) printf ("piBoardRev: Returning revision: %d\n", boardRev) ; return boardRev ; } /* * piBoardId: * Do more digging into the board revision string as above, but return * as much details as we can. * This is undocumented and really only intended for the GPIO command. * Use at your own risk! ********************************************************************************* */ void piBoardId (int *model, int *rev, int *mem, int *maker, int *overVolted) { FILE *cpuFd ; char line [120] ; char *c ; (void)piBoardRev () ; // Call this first to make sure all's OK. Don't care about the result. if ((cpuFd = fopen ("/proc/cpuinfo", "r")) == NULL) piBoardRevOops ("Unable to open /proc/cpuinfo") ; while (fgets (line, 120, cpuFd) != NULL) if (strncmp (line, "Revision", 8) == 0) break ; fclose (cpuFd) ; if (strncmp (line, "Revision", 8) != 0) piBoardRevOops ("No \"Revision\" line") ; // Chomp trailing CR/NL for (c = &line [strlen (line) - 1] ; (*c == '\n') || (*c == '\r') ; --c) *c = 0 ; if (wiringPiDebug) printf ("piboardId: Revision string: %s\n", line) ; // Scan to first digit for (c = line ; *c ; ++c) if (isdigit (*c)) break ; // Make sure its long enough if (strlen (c) < 4) piBoardRevOops ("Bogus \"Revision\" line") ; // If longer than 4, we'll assume it's been overvolted *overVolted = strlen (c) > 4 ; // Extract last 4 characters: c = c + strlen (c) - 4 ; // Fill out the replys as appropriate /**/ if (strcmp (c, "0002") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_1 ; *mem = 256 ; *maker = PI_MAKER_EGOMAN ; } else if (strcmp (c, "0003") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_1_1 ; *mem = 256 ; *maker = PI_MAKER_EGOMAN ; } else if (strcmp (c, "0004") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_2 ; *mem = 256 ; *maker = PI_MAKER_SONY ; } else if (strcmp (c, "0005") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_2 ; *mem = 256 ; *maker = PI_MAKER_QISDA ; } else if (strcmp (c, "0006") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_2 ; *mem = 256 ; *maker = PI_MAKER_EGOMAN ; } else if (strcmp (c, "0007") == 0) { *model = PI_MODEL_A ; *rev = PI_VERSION_2 ; *mem = 256 ; *maker = PI_MAKER_EGOMAN ; } else if (strcmp (c, "0008") == 0) { *model = PI_MODEL_A ; *rev = PI_VERSION_2 ; *mem = 256 ; *maker = PI_MAKER_SONY ; ; } else if (strcmp (c, "0009") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_2 ; *mem = 256 ; *maker = PI_MAKER_QISDA ; } else if (strcmp (c, "000d") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_2 ; *mem = 512 ; *maker = PI_MAKER_EGOMAN ; } else if (strcmp (c, "000e") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_2 ; *mem = 512 ; *maker = PI_MAKER_SONY ; } else if (strcmp (c, "000f") == 0) { *model = PI_MODEL_B ; *rev = PI_VERSION_2 ; *mem = 512 ; *maker = PI_MAKER_EGOMAN ; } else if (strcmp (c, "0010") == 0) { *model = PI_MODEL_BP ; *rev = PI_VERSION_1_2 ; *mem = 512 ; *maker = PI_MAKER_SONY ; } else if (strcmp (c, "0011") == 0) { *model = PI_MODEL_CM ; *rev = PI_VERSION_1_2 ; *mem = 512 ; *maker = PI_MAKER_SONY ; } //add for BananaPro by LeMaker team else if (strcmp (c, "0000") == 0) { *model = PI_MODEL_BPR; *rev = PI_VERSION_1_2; *mem = 1024; *maker = PI_MAKER_LEMAKER;} //end 2014.09.30 else { *model = 0 ; *rev = 0 ; *mem = 0 ; *maker = 0 ; } } /* * wpiPinToGpio: * Translate a wiringPi Pin number to native GPIO pin number. * Provided for external support. ********************************************************************************* */ int wpiPinToGpio (int wpiPin) { return pinToGpio [wpiPin & 63] ; } /* * physPinToGpio: * Translate a physical Pin number to native GPIO pin number. * Provided for external support. ********************************************************************************* */ int physPinToGpio (int physPin) { return physToGpio [physPin & 63] ; } /* * physPinToGpio: * Translate a physical Pin number to wiringPi pin number. add by lemaker team for BananaPi * Provided for external support. ********************************************************************************* */ int physPinToPin(int physPin) { return physToPin [physPin & 63] ; } /* * setPadDrive: * Set the PAD driver value ********************************************************************************* */ void setPadDrive (int group, int value) { uint32_t wrVal ; /*add for BananaPro by LeMaker team*/ if(BPRVER == version) return; /*end 2014.08.19*/ if ((wiringPiMode == WPI_MODE_PINS) || (wiringPiMode == WPI_MODE_PHYS) || (wiringPiMode == WPI_MODE_GPIO)) { if ((group < 0) || (group > 2)) return ; wrVal = BCM_PASSWORD | 0x18 | (value & 7) ; *(pads + group + 11) = wrVal ; if (wiringPiDebug) { printf ("setPadDrive: Group: %d, value: %d (%08X)\n", group, value, wrVal) ; printf ("Read : %08X\n", *(pads + group + 11)) ; } } } /* * getAlt: * Returns the ALT bits for a given port. Only really of-use * for the gpio readall command (I think) ********************************************************************************* */ int getAlt (int pin) { int fSel, shift, alt ; pin &= 63 ; /*add for BananaPro by LeMaker team*/ if(BPRVER == version) { //printf("[%s:L%d] the pin:%d mode: %d is invaild,please check it over!\n", __func__, __LINE__, pin, wiringPiMode); if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio_BP [pin] ; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio_BP[pin] ; else if (wiringPiMode == WPI_MODE_GPIO) pin=pinTobcm_BP[pin];//need map A20 to bcm else return 0 ; if(-1 == pin) { printf("[%s:L%d] the pin:%d mode: %d is invaild,please check it over!\n", __func__, __LINE__, pin, wiringPiMode); return -1; } alt=sunxi_get_gpio_mode(pin); return alt ; } /*end 2014.08.19*/ /**/ if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio [pin] ; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio [pin] ; else if (wiringPiMode != WPI_MODE_GPIO) return 0 ; fSel = gpioToGPFSEL [pin] ; shift = gpioToShift [pin] ; alt = (*(gpio + fSel) >> shift) & 7 ; return alt ; } /* * pwmSetMode: * Select the native "balanced" mode, or standard mark:space mode ********************************************************************************* */ void pwmSetMode (int mode) { /*add for BananaPro by LeMaker team*/ if (BPRVER == version) { sunxi_pwm_set_mode(mode); return; } /*end 2014.08.19*/ if ((wiringPiMode == WPI_MODE_PINS) || (wiringPiMode == WPI_MODE_PHYS) || (wiringPiMode == WPI_MODE_GPIO)) { if (mode == PWM_MODE_MS) *(pwm + PWM_CONTROL) = PWM0_ENABLE | PWM1_ENABLE | PWM0_MS_MODE | PWM1_MS_MODE ; else *(pwm + PWM_CONTROL) = PWM0_ENABLE | PWM1_ENABLE ; } } /* * pwmSetRange: * Set the PWM range register. We set both range registers to the same * value. If you want different in your own code, then write your own. ********************************************************************************* */ void pwmSetRange (unsigned int range) { /*add for BananaPro by LeMaker team*/ if (BPRVER == version) { sunxi_pwm_set_period(range); return; } /*end 2014.08.19*/ if ((wiringPiMode == WPI_MODE_PINS) || (wiringPiMode == WPI_MODE_PHYS) || (wiringPiMode == WPI_MODE_GPIO)) { *(pwm + PWM0_RANGE) = range ; delayMicroseconds (10) ; *(pwm + PWM1_RANGE) = range ; delayMicroseconds (10) ; } } /* * pwmSetClock: * Set/Change the PWM clock. Originally my code, but changed * (for the better!) by Chris Hall, * after further study of the manual and testing with a 'scope ********************************************************************************* */ void pwmSetClock (int divisor) { uint32_t pwm_control ; /*add for BananaPro by LeMaker team*/ if (BPRVER == version) { sunxi_pwm_set_clk(divisor); sunxi_pwm_set_enable(1); return; } /*end 2014.08.19*/ divisor &= 4095 ; if ((wiringPiMode == WPI_MODE_PINS) || (wiringPiMode == WPI_MODE_PHYS) || (wiringPiMode == WPI_MODE_GPIO)) { if (wiringPiDebug) printf ("Setting to: %d. Current: 0x%08X\n", divisor, *(clk + PWMCLK_DIV)) ; pwm_control = *(pwm + PWM_CONTROL) ; // preserve PWM_CONTROL // We need to stop PWM prior to stopping PWM clock in MS mode otherwise BUSY // stays high. *(pwm + PWM_CONTROL) = 0 ; // Stop PWM // Stop PWM clock before changing divisor. The delay after this does need to // this big (95uS occasionally fails, 100uS OK), it's almost as though the BUSY // flag is not working properly in balanced mode. Without the delay when DIV is // adjusted the clock sometimes switches to very slow, once slow further DIV // adjustments do nothing and it's difficult to get out of this mode. *(clk + PWMCLK_CNTL) = BCM_PASSWORD | 0x01 ; // Stop PWM Clock delayMicroseconds (110) ; // prevents clock going sloooow while ((*(clk + PWMCLK_CNTL) & 0x80) != 0) // Wait for clock to be !BUSY delayMicroseconds (1) ; *(clk + PWMCLK_DIV) = BCM_PASSWORD | (divisor << 12) ; *(clk + PWMCLK_CNTL) = BCM_PASSWORD | 0x11 ; // Start PWM clock *(pwm + PWM_CONTROL) = pwm_control ; // restore PWM_CONTROL if (wiringPiDebug) printf ("Set to: %d. Now : 0x%08X\n", divisor, *(clk + PWMCLK_DIV)) ; } } /* * gpioClockSet: * Set the freuency on a GPIO clock pin ********************************************************************************* */ void gpioClockSet (int pin, int freq) { int divi, divr, divf ; /*add for BananaPro by LeMaker team*/ if (BPRVER == version) return; /*end 2014.08.19*/ pin &= 63 ; /**/ if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio [pin] ; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio [pin] ; else if (wiringPiMode != WPI_MODE_GPIO) return ; divi = 19200000 / freq ; divr = 19200000 % freq ; divf = (int)((double)divr * 4096.0 / 19200000.0) ; if (divi > 4095) divi = 4095 ; *(clk + gpioToClkCon [pin]) = BCM_PASSWORD | GPIO_CLOCK_SOURCE ; // Stop GPIO Clock while ((*(clk + gpioToClkCon [pin]) & 0x80) != 0) // ... and wait ; *(clk + gpioToClkDiv [pin]) = BCM_PASSWORD | (divi << 12) | divf ; // Set dividers *(clk + gpioToClkCon [pin]) = BCM_PASSWORD | 0x10 | GPIO_CLOCK_SOURCE ; // Start Clock } /* * wiringPiFindNode: * Locate our device node ********************************************************************************* */ struct wiringPiNodeStruct *wiringPiFindNode (int pin) { struct wiringPiNodeStruct *node = wiringPiNodes ; while (node != NULL) if ((pin >= node->pinBase) && (pin <= node->pinMax)) return node ; else node = node->next ; return NULL ; } /* * wiringPiNewNode: * Create a new GPIO node into the wiringPi handling system ********************************************************************************* */ static void pinModeDummy (struct wiringPiNodeStruct *node, int pin, int mode) { return ; } static void pullUpDnControlDummy (struct wiringPiNodeStruct *node, int pin, int pud) { return ; } static int digitalReadDummy (struct wiringPiNodeStruct *node, int pin) { return LOW ; } static void digitalWriteDummy (struct wiringPiNodeStruct *node, int pin, int value) { return ; } static void pwmWriteDummy (struct wiringPiNodeStruct *node, int pin, int value) { return ; } static int analogReadDummy (struct wiringPiNodeStruct *node, int pin) { return 0 ; } static void analogWriteDummy (struct wiringPiNodeStruct *node, int pin, int value) { return ; } struct wiringPiNodeStruct *wiringPiNewNode (int pinBase, int numPins) { int pin ; struct wiringPiNodeStruct *node ; // Minimum pin base is 64 if (pinBase < 64) (void)wiringPiFailure (WPI_FATAL, "wiringPiNewNode: pinBase of %d is < 64\n", pinBase) ; // Check all pins in-case there is overlap: for (pin = pinBase ; pin < (pinBase + numPins) ; ++pin) if (wiringPiFindNode (pin) != NULL) (void)wiringPiFailure (WPI_FATAL, "wiringPiNewNode: Pin %d overlaps with existing definition\n", pin) ; node = (struct wiringPiNodeStruct *)calloc (sizeof (struct wiringPiNodeStruct), 1) ; // calloc zeros if (node == NULL) (void)wiringPiFailure (WPI_FATAL, "wiringPiNewNode: Unable to allocate memory: %s\n", strerror (errno)) ; node->pinBase = pinBase ; node->pinMax = pinBase + numPins - 1 ; node->pinMode = pinModeDummy ; node->pullUpDnControl = pullUpDnControlDummy ; node->digitalRead = digitalReadDummy ; node->digitalWrite = digitalWriteDummy ; node->pwmWrite = pwmWriteDummy ; node->analogRead = analogReadDummy ; node->analogWrite = analogWriteDummy ; node->next = wiringPiNodes ; wiringPiNodes = node ; return node ; } #ifdef notYetReady /* * pinED01: * pinED10: * Enables edge-detect mode on a pin - from a 0 to a 1 or 1 to 0 * Pin must already be in input mode with appropriate pull up/downs set. ********************************************************************************* */ void pinEnableED01Pi (int pin) { pin = pinToGpio [pin & 63] ; } #endif /* ********************************************************************************* * Core Functions ********************************************************************************* */ /* * pinModeAlt: * This is an un-documented special to let you set any pin to any mode ********************************************************************************* */ void pinModeAlt (int pin, int mode) { int fSel, shift ; /*add for BananaPro by LeMaker team*/ if (BPRVER == version) { return; } /*end 2014.08.19*/ if ((pin & PI_GPIO_MASK) == 0) // On-board pin { /**/ if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio [pin] ; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio [pin] ; else if (wiringPiMode != WPI_MODE_GPIO) return ; fSel = gpioToGPFSEL [pin] ; shift = gpioToShift [pin] ; *(gpio + fSel) = (*(gpio + fSel) & ~(7 << shift)) | ((mode & 0x7) << shift) ; } } /* * pinMode: * Sets the mode of a pin to be input, output or PWM output ********************************************************************************* */ void pinMode (int pin, int mode) { int fSel, shift, alt ; struct wiringPiNodeStruct *node = wiringPiNodes ; int origPin = pin ; /*add for BananaPro by LeMaker team*/ if(BPRVER == version ) { if (wiringPiDebug) printf ("%s,%d,pin:%d,mode:%d\n", __func__, __LINE__,pin,mode) ; if ((pin & PI_GPIO_MASK) == 0) // On-board pin { if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio_BP [pin] ; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio_BP[pin] ; else if (wiringPiMode == WPI_MODE_GPIO) pin=pinTobcm_BP[pin];//need map A20 to bcm else return ; if (-1 == pin) /*VCC or GND return directly*/ { //printf("[%s:L%d] the pin:%d is invaild,please check it over!\n", __func__, __LINE__, pin); return; } if (mode == INPUT) { sunxi_set_gpio_mode(pin,INPUT); wiringPinMode = INPUT; return ; } else if (mode == OUTPUT) { sunxi_set_gpio_mode(pin, OUTPUT); //gootoomoon_set_mode wiringPinMode = OUTPUT; return ; } else if (mode == PWM_OUTPUT) { if(pin != 259) { printf("the pin you choose is not surport hardware PWM\n"); printf("you can select PI3 for PWM pin\n"); printf("or you can use it in softPwm mode\n"); return ; } //printf("you choose the hardware PWM:%d\n", 1); sunxi_set_gpio_mode(pin,PWM_OUTPUT); wiringPinMode = PWM_OUTPUT; return ; } else return ; } else { if ((node = wiringPiFindNode (pin)) != NULL) node->pinMode (node, pin, mode) ; return ; } } /*end 2014.08.19*/ if ((pin & PI_GPIO_MASK) == 0) // On-board pin { /**/ if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio [pin] ; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio [pin] ; else if (wiringPiMode != WPI_MODE_GPIO) return ; softPwmStop (origPin) ; softToneStop (origPin) ; fSel = gpioToGPFSEL [pin] ; shift = gpioToShift [pin] ; /**/ if (mode == INPUT) *(gpio + fSel) = (*(gpio + fSel) & ~(7 << shift)) ; // Sets bits to zero = input else if (mode == OUTPUT) *(gpio + fSel) = (*(gpio + fSel) & ~(7 << shift)) | (1 << shift) ; else if (mode == SOFT_PWM_OUTPUT) softPwmCreate (origPin, 0, 100) ; else if (mode == SOFT_TONE_OUTPUT) softToneCreate (origPin) ; else if (mode == PWM_TONE_OUTPUT) { pinMode (origPin, PWM_OUTPUT) ; // Call myself to enable PWM mode pwmSetMode (PWM_MODE_MS) ; } else if (mode == PWM_OUTPUT) { if ((alt = gpioToPwmALT [pin]) == 0) // Not a hardware capable PWM pin return ; // Set pin to PWM mode *(gpio + fSel) = (*(gpio + fSel) & ~(7 << shift)) | (alt << shift) ; delayMicroseconds (110) ; // See comments in pwmSetClockWPi pwmSetMode (PWM_MODE_BAL) ; // Pi default mode pwmSetRange (1024) ; // Default range of 1024 pwmSetClock (32) ; // 19.2 / 32 = 600KHz - Also starts the PWM } else if (mode == GPIO_CLOCK) { if ((alt = gpioToGpClkALT0 [pin]) == 0) // Not a GPIO_CLOCK pin return ; // Set pin to GPIO_CLOCK mode and set the clock frequency to 100KHz *(gpio + fSel) = (*(gpio + fSel) & ~(7 << shift)) | (alt << shift) ; delayMicroseconds (110) ; gpioClockSet (pin, 100000) ; } } else { if ((node = wiringPiFindNode (pin)) != NULL) node->pinMode (node, pin, mode) ; return ; } } /* * pullUpDownCtrl: * Control the internal pull-up/down resistors on a GPIO pin * The Arduino only has pull-ups and these are enabled by writing 1 * to a port when in input mode - this paradigm doesn't quite apply * here though. ********************************************************************************* */ void pullUpDnControl (int pin, int pud) { struct wiringPiNodeStruct *node = wiringPiNodes ; /*add for BananaPro by LeMaker team*/ if(BPRVER == version) { pud = upDnConvert[pud]; if ((pin & PI_GPIO_MASK) == 0) // On-Board Pin { if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio_BP [pin] ; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio_BP[pin] ; else if (wiringPiMode == WPI_MODE_GPIO) pin=pinTobcm_BP[pin];//need map A20 to bcm else return ; if (wiringPiDebug) printf ("%s,%d,pin:%d\n", __func__, __LINE__,pin) ; if (-1 == pin) { printf("[%s:L%d] the pin:%d is invaild,please check it over!\n", __func__, __LINE__, pin); return; } pud &= 3 ; sunxi_pullUpDnControl(pin, pud); return; } else // Extension module { if ((node = wiringPiFindNode (pin)) != NULL) node->pullUpDnControl (node, pin, pud) ; return ; } } /*end 2014.08.19*/ if ((pin & PI_GPIO_MASK) == 0) // On-Board Pin { /**/ if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio [pin] ; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio [pin] ; else if (wiringPiMode != WPI_MODE_GPIO) return ; *(gpio + GPPUD) = pud & 3 ; delayMicroseconds (5) ; *(gpio + gpioToPUDCLK [pin]) = 1 << (pin & 31) ; delayMicroseconds (5) ; *(gpio + GPPUD) = 0 ; delayMicroseconds (5) ; *(gpio + gpioToPUDCLK [pin]) = 0 ; delayMicroseconds (5) ; } else // Extension module { if ((node = wiringPiFindNode (pin)) != NULL) node->pullUpDnControl (node, pin, pud) ; return ; } } /* * digitalRead: * Read the value of a given Pin, returning HIGH or LOW ********************************************************************************* */ int digitalRead (int pin) { char c ; struct wiringPiNodeStruct *node = wiringPiNodes ; /*add for BananaPro by LeMaker team*/ if(BPRVER == version) { if ((pin & PI_GPIO_MASK) == 0) // On-Board Pin { if (wiringPiMode == WPI_MODE_GPIO_SYS) // Sys mode { if(pin==0) { //printf("%d %s,%d invalid pin,please check it over.\n",pin,__func__, __LINE__); return 0; } if(syspin[pin]==-1) { //printf("%d %s,%d invalid pin,please check it over.\n",pin,__func__, __LINE__); return 0; } if (sysFds [pin] == -1) { if (wiringPiDebug) printf ("pin %d sysFds -1.%s,%d\n", pin ,__func__, __LINE__) ; return LOW ; } if (wiringPiDebug) printf ("pin %d :%d.%s,%d\n", pin ,sysFds [pin],__func__, __LINE__) ; lseek (sysFds [pin], 0L, SEEK_SET) ; read (sysFds [pin], &c, 1) ; return (c == '0') ? LOW : HIGH ; } else if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio_BP [pin] ; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio_BP[pin] ; else if (wiringPiMode == WPI_MODE_GPIO) pin=pinTobcm_BP[pin];//need map A20 to bcm else return LOW ; if(-1 == pin){ printf("[%s:L%d] the pin:%d is invaild,please check it over!\n", __func__, __LINE__, pin); return LOW; } return sunxi_digitalRead(pin); } else { if ((node = wiringPiFindNode (pin)) == NULL) return LOW ; return node->digitalRead (node, pin) ; } } /*end 2014.08.19*/ if ((pin & PI_GPIO_MASK) == 0) // On-Board Pin { /**/ if (wiringPiMode == WPI_MODE_GPIO_SYS) // Sys mode { if (sysFds [pin] == -1) return LOW ; lseek (sysFds [pin], 0L, SEEK_SET) ; read (sysFds [pin], &c, 1) ; return (c == '0') ? LOW : HIGH ; } else if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio [pin] ; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio [pin] ; else if (wiringPiMode != WPI_MODE_GPIO) return LOW ; if ((*(gpio + gpioToGPLEV [pin]) & (1 << (pin & 31))) != 0) return HIGH ; else return LOW ; } else { if ((node = wiringPiFindNode (pin)) == NULL) return LOW ; return node->digitalRead (node, pin) ; } } /* * digitalWrite: * Set an output bit ********************************************************************************* */ void digitalWrite (int pin, int value) { struct wiringPiNodeStruct *node = wiringPiNodes ; /*add for BananaPro by LeMaker team*/ if(BPRVER == version) { if (wiringPiDebug) printf ("%s,%d\n", __func__, __LINE__) ; if ((pin & PI_GPIO_MASK) == 0) // On-Board Pin { /**/ if (wiringPiMode == WPI_MODE_GPIO_SYS) // Sys mode { if (wiringPiDebug) { printf("%d %s,%d invalid pin,please check it over.\n",pin,__func__, __LINE__); } if(pin==0) { //printf("%d %s,%d invalid pin,please check it over.\n",pin,__func__, __LINE__); return; } if(syspin[pin]==-1) { //printf("%d %s,%d invalid pin,please check it over.\n",pin,__func__, __LINE__); return; } if (sysFds [pin] == -1) { if (wiringPiDebug) printf ("pin %d sysFds -1.%s,%d\n", pin ,__func__, __LINE__) ; } if (sysFds [pin] != -1) { if (wiringPiDebug) printf ("pin %d :%d.%s,%d\n", pin ,sysFds [pin],__func__, __LINE__) ; if (value == LOW) write (sysFds [pin], "0\n", 2) ; else write (sysFds [pin], "1\n", 2) ; } return ; } else if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio_BP [pin] ; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio_BP[pin] ; else if (wiringPiMode == WPI_MODE_GPIO) pin=pinTobcm_BP[pin];//need map A20 to bcm else return ; if(-1 == pin){ //printf("[%s:L%d] the pin:%d is invaild,please check it over!\n", __func__, __LINE__, pin); return ; } sunxi_digitalWrite(pin, value); } else { if ((node = wiringPiFindNode (pin)) != NULL) node->digitalWrite (node, pin, value) ; } return; } /*end 2014.08.19*/ if ((pin & PI_GPIO_MASK) == 0) // On-Board Pin { /**/ if (wiringPiMode == WPI_MODE_GPIO_SYS) // Sys mode { if (sysFds [pin] != -1) { if (value == LOW) write (sysFds [pin], "0\n", 2) ; else write (sysFds [pin], "1\n", 2) ; } return ; } else if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio [pin] ; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio [pin] ; else if (wiringPiMode != WPI_MODE_GPIO) return ; if (value == LOW) *(gpio + gpioToGPCLR [pin]) = 1 << (pin & 31) ; else *(gpio + gpioToGPSET [pin]) = 1 << (pin & 31) ; } else { if ((node = wiringPiFindNode (pin)) != NULL) node->digitalWrite (node, pin, value) ; } } /* * pwmWrite: * Set an output PWM value ********************************************************************************* */ void pwmWrite (int pin, int value) { struct wiringPiNodeStruct *node = wiringPiNodes ; /*add for BananaPro by LeMaker team*/ if(BPRVER == version) { uint32_t a_val = 0; if(pwmmode==1)//sycle { sunxi_pwm_set_mode(1); } else { //sunxi_pwm_set_mode(0); } if (pin < MAX_PIN_NUM) // On-Board Pin needto fix me Jim { if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio_BP [pin] ; else if (wiringPiMode == WPI_MODE_PHYS){ pin = physToGpio_BP[pin] ; } else if (wiringPiMode == WPI_MODE_GPIO) pin=pinTobcm_BP[pin];//need map A20 to bcm else return ; if(-1 == pin){ printf("[%s:L%d] the pin:%d is invaild,please check it over!\n", __func__, __LINE__, pin); return ; } if(pin != 259){ printf("please use soft pwmmode or choose PWM pin\n"); return ; } a_val = sunxi_pwm_get_period(); if (wiringPiDebug) printf("==> no:%d period now is :%d,act_val to be set:%d\n",__LINE__,a_val, value); if(value > a_val){ printf("val pwmWrite 0 <= X <= 1024\n"); printf("Or you can set new range by yourself by pwmSetRange(range\n"); return; } //if value changed chang it sunxi_pwm_set_enable(0); sunxi_pwm_set_act(value); sunxi_pwm_set_enable(1); } else { printf ("not on board :%s,%d\n", __func__, __LINE__) ; if ((node = wiringPiFindNode (pin)) != NULL){ if (wiringPiDebug) printf ("Jim find node%s,%d\n", __func__, __LINE__) ; node->digitalWrite (node, pin, value) ; } } if (wiringPiDebug) printf ("this fun is ok now %s,%d\n", __func__, __LINE__) ; return; } /*end 2014.08.19*/ if ((pin & PI_GPIO_MASK) == 0) // On-Board Pin { /**/ if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio [pin] ; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio [pin] ; else if (wiringPiMode != WPI_MODE_GPIO) return ; *(pwm + gpioToPwmPort [pin]) = value ; } else { if ((node = wiringPiFindNode (pin)) != NULL) node->pwmWrite (node, pin, value) ; } } /* * analogRead: * Read the analog value of a given Pin. * There is no on-board Pi analog hardware, * so this needs to go to a new node. ********************************************************************************* */ int analogRead (int pin) { struct wiringPiNodeStruct *node = wiringPiNodes ; if ((node = wiringPiFindNode (pin)) == NULL) return 0 ; else return node->analogRead (node, pin) ; } /* * analogWrite: * Write the analog value to the given Pin. * There is no on-board Pi analog hardware, * so this needs to go to a new node. ********************************************************************************* */ void analogWrite (int pin, int value) { struct wiringPiNodeStruct *node = wiringPiNodes ; if ((node = wiringPiFindNode (pin)) == NULL) return ; node->analogWrite (node, pin, value) ; } /* * pwmToneWrite: * Pi Specific. * Output the given frequency on the Pi's PWM pin ********************************************************************************* */ void pwmToneWrite (int pin, int freq) { int range ; if (freq == 0) pwmWrite (pin, 0) ; // Off else { range = 600000 / freq ; pwmSetRange (range) ; pwmWrite (pin, freq / 2) ; } } /* * digitalWriteByte: * Pi Specific * Write an 8-bit byte to the first 8 GPIO pins - try to do it as * fast as possible. * However it still needs 2 operations to set the bits, so any external * hardware must not rely on seeing a change as there will be a change * to set the outputs bits to zero, then another change to set the 1's ********************************************************************************* */ static int head2win[8]={11,12,13,15,16,18,22,7}; /*add for BananaPro by lemaker team*/ void digitalWriteByte (int value) { uint32_t pinSet = 0 ; uint32_t pinClr = 0 ; int mask = 1 ; int pin ; /*add for BananaPro by LeMaker team*/ if(BPRVER == version) { if (wiringPiMode == WPI_MODE_GPIO_SYS||wiringPiMode == WPI_MODE_GPIO) { for (pin = 0 ; pin < 8 ; ++pin) { pinMode(pin,OUTPUT); delay(1); digitalWrite (pinToGpio [pin], value & mask) ; mask <<= 1 ; } } else if(wiringPiMode == WPI_MODE_PINS) { for (pin = 0 ; pin < 8 ; ++pin) { pinMode(pin,OUTPUT); delay(1); digitalWrite (pin, value & mask) ; mask <<= 1 ; } } else { for (pin = 0 ; pin < 8 ; ++pin) { pinMode(head2win[pin],OUTPUT); delay(1); digitalWrite (head2win[pin], value & mask) ; mask <<= 1 ; } } return ; } /*end 2014.08.19*/ /**/ if (wiringPiMode == WPI_MODE_GPIO_SYS) { for (pin = 0 ; pin < 8 ; ++pin) { digitalWrite (pin, value & mask) ; mask <<= 1 ; } return ; } else { for (pin = 0 ; pin < 8 ; ++pin) { if ((value & mask) == 0) pinClr |= (1 << pinToGpio [pin]) ; else pinSet |= (1 << pinToGpio [pin]) ; mask <<= 1 ; } *(gpio + gpioToGPCLR [0]) = pinClr ; *(gpio + gpioToGPSET [0]) = pinSet ; } } /* * waitForInterrupt: * Pi Specific. * Wait for Interrupt on a GPIO pin. * This is actually done via the /sys/class/gpio interface regardless of * the wiringPi access mode in-use. Maybe sometime it might get a better * way for a bit more efficiency. ********************************************************************************* */ int waitForInterrupt (int pin, int mS) { int fd, x ; uint8_t c ; struct pollfd polls ; /**/ if (wiringPiMode == WPI_MODE_PINS) pin = pinToGpio [pin] ; else if (wiringPiMode == WPI_MODE_PHYS) pin = physToGpio [pin] ; if ((fd = sysFds [pin]) == -1) return -2 ; // Setup poll structure polls.fd = fd ; polls.events = POLLPRI ; // Urgent data! // Wait for it ... x = poll (&polls, 1, mS) ; // Do a dummy read to clear the interrupt // A one character read appars to be enough. (void)read (fd, &c, 1) ; return x ; } /* * interruptHandler: * This is a thread and gets started to wait for the interrupt we're * hoping to catch. It will call the user-function when the interrupt * fires. ********************************************************************************* */ static void *interruptHandler (void *arg) { int myPin ; (void)piHiPri (55) ; // Only effective if we run as root myPin = pinPass ; pinPass = -1 ; for (;;) if (waitForInterrupt (myPin, -1) > 0) isrFunctions [myPin] () ; return NULL ; } /* * wiringPiISR: * Pi Specific. * Take the details and create an interrupt handler that will do a call- * back to the user supplied function. ********************************************************************************* */ int wiringPiISR (int pin, int mode, void (*function)(void)) { pthread_t threadId ; const char *modeS ; char fName [64] ; char pinS [8] ; pid_t pid ; int count, i ; char c ; int bcmGpioPin ; if ((pin < 0) || (pin > 63)) return wiringPiFailure (WPI_FATAL, "wiringPiISR: pin must be 0-63 (%d)\n", pin) ; /**/ if (wiringPiMode == WPI_MODE_UNINITIALISED) return wiringPiFailure (WPI_FATAL, "wiringPiISR: wiringPi has not been initialised. Unable to continue.\n") ; else if (wiringPiMode == WPI_MODE_PINS) bcmGpioPin = pinToGpio [pin] ; else if (wiringPiMode == WPI_MODE_PHYS) bcmGpioPin = physToGpio [pin] ; else bcmGpioPin = pin ; /*add for BananaPro by LeMaker team*/ if(BPRVER == version) { if(-1 == bcmGpioPin) /**/ { printf("[%s:L%d] the pin:%d is invaild,please check it over!\n", __func__, __LINE__, pin); return -1; } if(edge[bcmGpioPin]==-1) return wiringPiFailure (WPI_FATAL, "wiringPiISR: pin not sunpprt on bananaPi (%d,%d)\n", pin,bcmGpioPin) ; } /*end 2014.08.19*/ // Now export the pin and set the right edge // We're going to use the gpio program to do this, so it assumes // a full installation of wiringPi. It's a bit 'clunky', but it // is a way that will work when we're running in "Sys" mode, as // a non-root user. (without sudo) if (mode != INT_EDGE_SETUP) { /**/ if (mode == INT_EDGE_FALLING) modeS = "falling" ; else if (mode == INT_EDGE_RISING) modeS = "rising" ; else modeS = "both" ; sprintf (pinS, "%d", bcmGpioPin) ; if ((pid = fork ()) < 0) // Fail return wiringPiFailure (WPI_FATAL, "wiringPiISR: fork failed: %s\n", strerror (errno)) ; if (pid == 0) // Child, exec { /**/ if (access ("/usr/local/bin/gpio", X_OK) == 0) { execl ("/usr/local/bin/gpio", "gpio", "edge", pinS, modeS, (char *)NULL) ; return wiringPiFailure (WPI_FATAL, "wiringPiISR: execl failed: %s\n", strerror (errno)) ; } else if (access ("/usr/bin/gpio", X_OK) == 0) { execl ("/usr/bin/gpio", "gpio", "edge", pinS, modeS, (char *)NULL) ; return wiringPiFailure (WPI_FATAL, "wiringPiISR: execl failed: %s\n", strerror (errno)) ; } else return wiringPiFailure (WPI_FATAL, "wiringPiISR: Can't find gpio program\n") ; } else // Parent, wait wait (NULL) ; } // Now pre-open the /sys/class node - but it may already be open if // we are in Sys mode... if (sysFds [bcmGpioPin] == -1) { sprintf (fName, "/sys/class/gpio/gpio%d/value", bcmGpioPin) ; if ((sysFds [bcmGpioPin] = open (fName, O_RDWR)) < 0) return wiringPiFailure (WPI_FATAL, "wiringPiISR: unable to open %s: %s\n", fName, strerror (errno)) ; } // Clear any initial pending interrupt ioctl (sysFds [bcmGpioPin], FIONREAD, &count) ; for (i = 0 ; i < count ; ++i) read (sysFds [bcmGpioPin], &c, 1) ; isrFunctions [pin] = function ; pthread_mutex_lock (&pinMutex) ; pinPass = pin ; pthread_create (&threadId, NULL, interruptHandler, NULL) ; while (pinPass != -1) delay (1) ; pthread_mutex_unlock (&pinMutex) ; return 0 ; } /* * initialiseEpoch: * Initialise our start-of-time variable to be the current unix * time in milliseconds and microseconds. ********************************************************************************* */ static void initialiseEpoch (void) { struct timeval tv ; gettimeofday (&tv, NULL) ; epochMilli = (uint64_t)tv.tv_sec * (uint64_t)1000 + (uint64_t)(tv.tv_usec / 1000) ; epochMicro = (uint64_t)tv.tv_sec * (uint64_t)1000000 + (uint64_t)(tv.tv_usec) ; } /* * delay: * Wait for some number of milliseconds ********************************************************************************* */ void delay (unsigned int howLong) { struct timespec sleeper, dummy ; sleeper.tv_sec = (time_t)(howLong / 1000) ; sleeper.tv_nsec = (long)(howLong % 1000) * 1000000 ; nanosleep (&sleeper, &dummy) ; } /* * delayMicroseconds: * This is somewhat intersting. It seems that on the Pi, a single call * to nanosleep takes some 80 to 130 microseconds anyway, so while * obeying the standards (may take longer), it's not always what we * want! * * So what I'll do now is if the delay is less than 100uS we'll do it * in a hard loop, watching a built-in counter on the ARM chip. This is * somewhat sub-optimal in that it uses 100% CPU, something not an issue * in a microcontroller, but under a multi-tasking, multi-user OS, it's * wastefull, however we've no real choice )-: * * Plan B: It seems all might not be well with that plan, so changing it * to use gettimeofday () and poll on that instead... ********************************************************************************* */ void delayMicrosecondsHard (unsigned int howLong) { struct timeval tNow, tLong, tEnd ; gettimeofday (&tNow, NULL) ; tLong.tv_sec = howLong / 1000000 ; tLong.tv_usec = howLong % 1000000 ; timeradd (&tNow, &tLong, &tEnd) ; while (timercmp (&tNow, &tEnd, <)) gettimeofday (&tNow, NULL) ; } void delayMicroseconds (unsigned int howLong) { struct timespec sleeper ; unsigned int uSecs = howLong % 1000000 ; unsigned int wSecs = howLong / 1000000 ; /**/ if (howLong == 0) return ; else if (howLong < 100) delayMicrosecondsHard (howLong) ; else { sleeper.tv_sec = wSecs ; sleeper.tv_nsec = (long)(uSecs * 1000L) ; nanosleep (&sleeper, NULL) ; } } /* * millis: * Return a number of milliseconds as an unsigned int. ********************************************************************************* */ unsigned int millis (void) { struct timeval tv ; uint64_t now ; gettimeofday (&tv, NULL) ; now = (uint64_t)tv.tv_sec * (uint64_t)1000 + (uint64_t)(tv.tv_usec / 1000) ; return (uint32_t)(now - epochMilli) ; } /* * micros: * Return a number of microseconds as an unsigned int. ********************************************************************************* */ unsigned int micros (void) { struct timeval tv ; uint64_t now ; gettimeofday (&tv, NULL) ; now = (uint64_t)tv.tv_sec * (uint64_t)1000000 + (uint64_t)tv.tv_usec ; return (uint32_t)(now - epochMicro) ; } /* * wiringPiSetup: * Must be called once at the start of your program execution. * * Default setup: Initialises the system into wiringPi Pin mode and uses the * memory mapped hardware directly. * * Changed now to revert to "gpio" mode if we're running on a Compute Module. ********************************************************************************* */ int wiringPiSetup (void) { int fd ; int boardRev ; int model, rev, mem, maker, overVolted ; if (getenv (ENV_DEBUG) != NULL) wiringPiDebug = TRUE ; if (getenv (ENV_CODES) != NULL) wiringPiReturnCodes = TRUE ; if (geteuid () != 0) (void)wiringPiFailure (WPI_FATAL, "wiringPiSetup: Must be root. (Did you forget sudo?)\n") ; if (wiringPiDebug) printf ("wiringPi: wiringPiSetup called\n") ; boardRev = piBoardRev () ; if (BPRVER == boardRev) /*modify for BananaPro by LeMaker team zhaolei*/ { pinToGpio = pinToGpioR3 ; physToGpio = physToGpioR3 ; physToPin = physToPinR3; } else { /**/ if (boardRev == 1) // A, B, Rev 1, 1.1 { pinToGpio = pinToGpioR1 ; physToGpio = physToGpioR1 ; } else // A, B, Rev 2, B+, CM { pinToGpio = pinToGpioR2 ; physToGpio = physToGpioR2 ; } } // Open the master /dev/memory device if ((fd = open ("/dev/mem", O_RDWR | O_SYNC | O_CLOEXEC) ) < 0) return wiringPiFailure (WPI_ALMOST, "wiringPiSetup: Unable to open /dev/mem: %s\n", strerror (errno)) ; if (BPRVER == boardRev) /*modify for BananaPro by LeMaker team*/ { // GPIO: gpio = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, GPIO_BASE_BP); //if (wiringPiDebug) // printf("++++ gpio:0x%x\n", gpio); //gpio += 0x21b; //for PD0 cubieboard //if (wiringPiDebug) // printf("++++ gpio PDx:0x%x\n", gpio); if ((int32_t)gpio == -1) return wiringPiFailure (WPI_ALMOST,"wiringPiSetup: mmap (GPIO) failed: %s\n", strerror (errno)) ; // PWM pwm = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, GPIO_PWM_BP) ; if ((int32_t)pwm == -1) return wiringPiFailure (WPI_ALMOST,"wiringPiSetup: mmap (PWM) failed: %s\n", strerror (errno)) ; // Clock control (needed for PWM) clk = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, CLOCK_BASE_BP) ; if ((int32_t)clk == -1) return wiringPiFailure (WPI_ALMOST,"wiringPiSetup: mmap (CLOCK) failed: %s\n", strerror (errno)) ; // The drive pads pads = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, GPIO_PADS_BP) ; if ((int32_t)pads == -1) return wiringPiFailure (WPI_ALMOST,"wiringPiSetup: mmap (PADS) failed: %s\n", strerror (errno)) ; #ifdef USE_TIMER // The system timer timer = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, GPIO_TIMER_BP) ; if ((int32_t)timer == -1) return wiringPiFailure (WPI_ALMOST,"wiringPiSetup: mmap (TIMER) failed: %s\n", strerror (errno)) ; // Set the timer to free-running, 1MHz. // 0xF9 is 249, the timer divide is base clock / (divide+1) // so base clock is 250MHz / 250 = 1MHz. *(timer + TIMER_CONTROL) = 0x0000280 ; *(timer + TIMER_PRE_DIV) = 0x00000F9 ; timerIrqRaw = timer + TIMER_IRQ_RAW ; #endif } else { // GPIO: gpio = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, GPIO_BASE) ; if ((int32_t)gpio == -1) return wiringPiFailure (WPI_ALMOST, "wiringPiSetup: mmap (GPIO) failed: %s\n", strerror (errno)) ; // PWM pwm = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, GPIO_PWM) ; if ((int32_t)pwm == -1) return wiringPiFailure (WPI_ALMOST, "wiringPiSetup: mmap (PWM) failed: %s\n", strerror (errno)) ; // Clock control (needed for PWM) clk = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, CLOCK_BASE) ; if ((int32_t)clk == -1) return wiringPiFailure (WPI_ALMOST, "wiringPiSetup: mmap (CLOCK) failed: %s\n", strerror (errno)) ; // The drive pads pads = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, GPIO_PADS) ; if ((int32_t)pads == -1) return wiringPiFailure (WPI_ALMOST, "wiringPiSetup: mmap (PADS) failed: %s\n", strerror (errno)) ; #ifdef USE_TIMER // The system timer timer = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, GPIO_TIMER) ; if ((int32_t)timer == -1) return wiringPiFailure (WPI_ALMOST, "wiringPiSetup: mmap (TIMER) failed: %s\n", strerror (errno)) ; // Set the timer to free-running, 1MHz. // 0xF9 is 249, the timer divide is base clock / (divide+1) // so base clock is 250MHz / 250 = 1MHz. *(timer + TIMER_CONTROL) = 0x0000280 ; *(timer + TIMER_PRE_DIV) = 0x00000F9 ; timerIrqRaw = timer + TIMER_IRQ_RAW ; #endif } initialiseEpoch () ; // If we're running on a compute module, then wiringPi pin numbers don't really many anything... piBoardId (&model, &rev, &mem, &maker, &overVolted) ; if (model == PI_MODEL_CM) wiringPiMode = WPI_MODE_GPIO ; else wiringPiMode = WPI_MODE_PINS ; return 0 ; } /* * wiringPiSetupGpio: * Must be called once at the start of your program execution. * * GPIO setup: Initialises the system into GPIO Pin mode and uses the * memory mapped hardware directly. ********************************************************************************* */ int wiringPiSetupGpio (void) { (void)wiringPiSetup () ; if (wiringPiDebug) printf ("wiringPi: wiringPiSetupGpio called\n") ; wiringPiMode = WPI_MODE_GPIO ; return 0 ; } /* * wiringPiSetupPhys: * Must be called once at the start of your program execution. * * Phys setup: Initialises the system into Physical Pin mode and uses the * memory mapped hardware directly. ********************************************************************************* */ int wiringPiSetupPhys (void) { (void)wiringPiSetup () ; if (wiringPiDebug) printf ("wiringPi: wiringPiSetupPhys called\n") ; wiringPiMode = WPI_MODE_PHYS ; return 0 ; } /* * wiringPiSetupSys: * Must be called once at the start of your program execution. * * Initialisation (again), however this time we are using the /sys/class/gpio * interface to the GPIO systems - slightly slower, but always usable as * a non-root user, assuming the devices are already exported and setup correctly. */ int wiringPiSetupSys (void) { int boardRev ; int pin ; char fName [128] ; if (getenv (ENV_DEBUG) != NULL) wiringPiDebug = TRUE ; if (getenv (ENV_CODES) != NULL) wiringPiReturnCodes = TRUE ; if (wiringPiDebug) printf ("wiringPi: wiringPiSetupSys called\n") ; boardRev = piBoardRev () ; if (BPRVER == boardRev) /*modify for BananaPro by LeMaker team*/ { pinToGpio = pinToGpioR3 ; physToGpio = physToGpioR3 ; physToPin = physToPinR3; } else { if (boardRev == 1) { pinToGpio = pinToGpioR1 ; physToGpio = physToGpioR1 ; } else { pinToGpio = pinToGpioR2 ; physToGpio = physToGpioR2 ; } } // Open and scan the directory, looking for exported GPIOs, and pre-open // the 'value' interface to speed things up for later if(BPRVER == boardRev) /*modify for BananaPro by LeMaker team*/ { for (pin = 1 ; pin < 32 ; ++pin) { sprintf (fName, "/sys/class/gpio/gpio%d/value", pin) ; sysFds [pin] = open (fName, O_RDWR) ; } } else { for (pin = 0 ; pin < 64 ; ++pin) { sprintf (fName, "/sys/class/gpio/gpio%d/value", pin) ; sysFds [pin] = open (fName, O_RDWR) ; } } initialiseEpoch () ; wiringPiMode = WPI_MODE_GPIO_SYS ; return 0 ; }