/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the OpenCV Foundation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_TS_OCL_TEST_HPP__ #define __OPENCV_TS_OCL_TEST_HPP__ #include "opencv2/opencv_modules.hpp" #include "opencv2/ts.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/videoio.hpp" #include "opencv2/highgui.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/imgproc/types_c.h" #include "opencv2/core/ocl.hpp" namespace cvtest { namespace ocl { using namespace cv; using namespace testing; inline std::vector ToUMat(const std::vector& src) { std::vector dst; dst.resize(src.size()); for (size_t i = 0; i < src.size(); ++i) { src[i].copyTo(dst[i]); } return dst; } inline UMat ToUMat(const Mat& src) { UMat dst; src.copyTo(dst); return dst; } inline UMat ToUMat(InputArray src) { UMat dst; src.getMat().copyTo(dst); return dst; } extern int test_loop_times; #define MAX_VALUE 357 #define EXPECT_MAT_NORM(mat, eps) \ do \ { \ EXPECT_LE(TestUtils::checkNorm1(mat), eps) \ } while ((void)0, 0) #define EXPECT_MAT_NEAR(mat1, mat2, eps) \ do \ { \ ASSERT_EQ(mat1.type(), mat2.type()); \ ASSERT_EQ(mat1.size(), mat2.size()); \ EXPECT_LE(TestUtils::checkNorm2(mat1, mat2), eps) \ << "Size: " << mat1.size() << std::endl; \ } while ((void)0, 0) #define EXPECT_MAT_NEAR_RELATIVE(mat1, mat2, eps) \ do \ { \ ASSERT_EQ(mat1.type(), mat2.type()); \ ASSERT_EQ(mat1.size(), mat2.size()); \ EXPECT_LE(TestUtils::checkNormRelative(mat1, mat2), eps) \ << "Size: " << mat1.size() << std::endl; \ } while ((void)0, 0) #define EXPECT_MAT_N_DIFF(mat1, mat2, num) \ do \ { \ ASSERT_EQ(mat1.type(), mat2.type()); \ ASSERT_EQ(mat1.size(), mat2.size()); \ Mat diff; \ absdiff(mat1, mat2, diff); \ EXPECT_LE(countNonZero(diff.reshape(1)), num) \ << "Size: " << mat1.size() << std::endl; \ } while ((void)0, 0) #define OCL_EXPECT_MATS_NEAR(name, eps) \ do \ { \ ASSERT_EQ(name ## _roi.type(), u ## name ## _roi.type()); \ ASSERT_EQ(name ## _roi.size(), u ## name ## _roi.size()); \ EXPECT_LE(TestUtils::checkNorm2(name ## _roi, u ## name ## _roi), eps) \ << "Size: " << name ## _roi.size() << std::endl; \ Point _offset; \ Size _wholeSize; \ u ## name ## _roi.locateROI(_wholeSize, _offset); \ Mat _mask(name.size(), CV_8UC1, Scalar::all(255)); \ _mask(Rect(_offset, name ## _roi.size())).setTo(Scalar::all(0)); \ ASSERT_EQ(name.type(), u ## name.type()); \ ASSERT_EQ(name.size(), u ## name.size()); \ EXPECT_LE(TestUtils::checkNorm2(name, u ## name, _mask), eps) \ << "Size: " << name ## _roi.size() << std::endl; \ } while ((void)0, 0) #define OCL_EXPECT_MATS_NEAR_RELATIVE(name, eps) \ do \ { \ ASSERT_EQ(name ## _roi.type(), u ## name ## _roi.type()); \ ASSERT_EQ(name ## _roi.size(), u ## name ## _roi.size()); \ EXPECT_LE(TestUtils::checkNormRelative(name ## _roi, u ## name ## _roi), eps) \ << "Size: " << name ## _roi.size() << std::endl; \ Point _offset; \ Size _wholeSize; \ name ## _roi.locateROI(_wholeSize, _offset); \ Mat _mask(name.size(), CV_8UC1, Scalar::all(255)); \ _mask(Rect(_offset, name ## _roi.size())).setTo(Scalar::all(0)); \ ASSERT_EQ(name.type(), u ## name.type()); \ ASSERT_EQ(name.size(), u ## name.size()); \ EXPECT_LE(TestUtils::checkNormRelative(name, u ## name, _mask), eps) \ << "Size: " << name ## _roi.size() << std::endl; \ } while ((void)0, 0) //for sparse matrix #define OCL_EXPECT_MATS_NEAR_RELATIVE_SPARSE(name, eps) \ do \ { \ ASSERT_EQ(name ## _roi.type(), u ## name ## _roi.type()); \ ASSERT_EQ(name ## _roi.size(), u ## name ## _roi.size()); \ EXPECT_LE(TestUtils::checkNormRelativeSparse(name ## _roi, u ## name ## _roi), eps) \ << "Size: " << name ## _roi.size() << std::endl; \ Point _offset; \ Size _wholeSize; \ name ## _roi.locateROI(_wholeSize, _offset); \ Mat _mask(name.size(), CV_8UC1, Scalar::all(255)); \ _mask(Rect(_offset, name ## _roi.size())).setTo(Scalar::all(0)); \ ASSERT_EQ(name.type(), u ## name.type()); \ ASSERT_EQ(name.size(), u ## name.size()); \ EXPECT_LE(TestUtils::checkNormRelativeSparse(name, u ## name, _mask), eps) \ << "Size: " << name ## _roi.size() << std::endl; \ } while ((void)0, 0) #define EXPECT_MAT_SIMILAR(mat1, mat2, eps) \ do \ { \ ASSERT_EQ(mat1.type(), mat2.type()); \ ASSERT_EQ(mat1.size(), mat2.size()); \ EXPECT_LE(checkSimilarity(mat1, mat2), eps) \ << "Size: " << mat1.size() << std::endl; \ } while ((void)0, 0) using perf::MatDepth; using perf::MatType; #define OCL_RNG_SEED 123456 struct CV_EXPORTS TestUtils { cv::RNG rng; TestUtils() { rng = cv::RNG(OCL_RNG_SEED); } int randomInt(int minVal, int maxVal) { return rng.uniform(minVal, maxVal); } double randomDouble(double minVal, double maxVal) { return rng.uniform(minVal, maxVal); } double randomDoubleLog(double minVal, double maxVal) { double logMin = log((double)minVal + 1); double logMax = log((double)maxVal + 1); double pow = rng.uniform(logMin, logMax); double v = exp(pow) - 1; CV_Assert(v >= minVal && (v < maxVal || (v == minVal && v == maxVal))); return v; } Size randomSize(int minVal, int maxVal) { #if 1 return cv::Size((int)randomDoubleLog(minVal, maxVal), (int)randomDoubleLog(minVal, maxVal)); #else return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal)); #endif } Size randomSize(int minValX, int maxValX, int minValY, int maxValY) { #if 1 return cv::Size((int)randomDoubleLog(minValX, maxValX), (int)randomDoubleLog(minValY, maxValY)); #else return cv::Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal)); #endif } Scalar randomScalar(double minVal, double maxVal) { return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal)); } Mat randomMat(Size size, int type, double minVal, double maxVal, bool useRoi = false) { RNG dataRng(rng.next()); return cvtest::randomMat(dataRng, size, type, minVal, maxVal, useRoi); } struct Border { int top, bot, lef, rig; }; Border randomBorder(int minValue = 0, int maxValue = MAX_VALUE) { Border border = { (int)randomDoubleLog(minValue, maxValue), (int)randomDoubleLog(minValue, maxValue), (int)randomDoubleLog(minValue, maxValue), (int)randomDoubleLog(minValue, maxValue) }; return border; } void randomSubMat(Mat& whole, Mat& subMat, const Size& roiSize, const Border& border, int type, double minVal, double maxVal) { Size wholeSize = Size(roiSize.width + border.lef + border.rig, roiSize.height + border.top + border.bot); whole = randomMat(wholeSize, type, minVal, maxVal, false); subMat = whole(Rect(border.lef, border.top, roiSize.width, roiSize.height)); } // If the two vectors are not equal, it will return the difference in vector size // Else it will return (total diff of each 1 and 2 rects covered pixels)/(total 1 rects covered pixels) // The smaller, the better matched static double checkRectSimilarity(const cv::Size & sz, std::vector& ob1, std::vector& ob2); //! read image from testdata folder. static cv::Mat readImage(const String &fileName, int flags = cv::IMREAD_COLOR); static cv::Mat readImageType(const String &fname, int type); static double checkNorm1(InputArray m, InputArray mask = noArray()); static double checkNorm2(InputArray m1, InputArray m2, InputArray mask = noArray()); static double checkSimilarity(InputArray m1, InputArray m2); static void showDiff(InputArray _src, InputArray _gold, InputArray _actual, double eps, bool alwaysShow); static inline double checkNormRelative(InputArray m1, InputArray m2, InputArray mask = noArray()) { return cvtest::norm(m1.getMat(), m2.getMat(), cv::NORM_INF, mask) / std::max((double)std::numeric_limits::epsilon(), (double)std::max(cvtest::norm(m1.getMat(), cv::NORM_INF), cvtest::norm(m2.getMat(), cv::NORM_INF))); } static inline double checkNormRelativeSparse(InputArray m1, InputArray m2, InputArray mask = noArray()) { double norm_inf = cvtest::norm(m1.getMat(), m2.getMat(), cv::NORM_INF, mask); double norm_rel = norm_inf / std::max((double)std::numeric_limits::epsilon(), (double)std::max(cvtest::norm(m1.getMat(), cv::NORM_INF), cvtest::norm(m2.getMat(), cv::NORM_INF))); return std::min(norm_inf, norm_rel); } }; #define TEST_DECLARE_INPUT_PARAMETER(name) Mat name, name ## _roi; UMat u ## name, u ## name ## _roi #define TEST_DECLARE_OUTPUT_PARAMETER(name) TEST_DECLARE_INPUT_PARAMETER(name) #define UMAT_UPLOAD_INPUT_PARAMETER(name) \ do \ { \ name.copyTo(u ## name); \ Size _wholeSize; Point ofs; name ## _roi.locateROI(_wholeSize, ofs); \ u ## name ## _roi = u ## name(Rect(ofs.x, ofs.y, name ## _roi.size().width, name ## _roi.size().height)); \ } while ((void)0, 0) #define UMAT_UPLOAD_OUTPUT_PARAMETER(name) UMAT_UPLOAD_INPUT_PARAMETER(name) template struct CV_EXPORTS TSTestWithParam : public TestUtils, public ::testing::TestWithParam { }; #define PARAM_TEST_CASE(name, ...) struct name : public TSTestWithParam< std::tr1::tuple< __VA_ARGS__ > > #define GET_PARAM(k) std::tr1::get< k >(GetParam()) #ifndef IMPLEMENT_PARAM_CLASS #define IMPLEMENT_PARAM_CLASS(name, type) \ class name \ { \ public: \ name ( type arg = type ()) : val_(arg) {} \ operator type () const {return val_;} \ private: \ type val_; \ }; \ inline void PrintTo( name param, std::ostream* os) \ { \ *os << #name << "(" << testing::PrintToString(static_cast< type >(param)) << ")"; \ } IMPLEMENT_PARAM_CLASS(Channels, int) #endif // IMPLEMENT_PARAM_CLASS #define OCL_TEST_P TEST_P #define OCL_TEST_F(name, ...) typedef name OCL_##name; TEST_F(OCL_##name, __VA_ARGS__) #define OCL_TEST(name, ...) TEST(OCL_##name, __VA_ARGS__) #define OCL_OFF(fn) cv::ocl::setUseOpenCL(false); fn #define OCL_ON(fn) cv::ocl::setUseOpenCL(true); fn #define OCL_ALL_DEPTHS Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F) #define OCL_ALL_CHANNELS Values(1, 2, 3, 4) CV_ENUM(Interpolation, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA) CV_ENUM(ThreshOp, THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_TOZERO, THRESH_TOZERO_INV) CV_ENUM(BorderType, BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT, BORDER_WRAP, BORDER_REFLECT_101) #define OCL_INSTANTIATE_TEST_CASE_P(prefix, test_case_name, generator) \ INSTANTIATE_TEST_CASE_P(OCL_ ## prefix, test_case_name, generator) } } // namespace cvtest::ocl #endif // __OPENCV_TS_OCL_TEST_HPP__