//===--- ArrayRef.h - Array Reference Wrapper -------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_ARRAYREF_H #define LLVM_ADT_ARRAYREF_H #include "llvm/Compiler.h" #include "llvm/Hashing.h" #include "llvm/None.h" #include "llvm/SmallVector.h" #include namespace llvm { /// ArrayRef - Represent a constant reference to an array (0 or more elements /// consecutively in memory), i.e. a start pointer and a length. It allows /// various APIs to take consecutive elements easily and conveniently. /// /// This class does not own the underlying data, it is expected to be used in /// situations where the data resides in some other buffer, whose lifetime /// extends past that of the ArrayRef. For this reason, it is not in general /// safe to store an ArrayRef. /// /// This is intended to be trivially copyable, so it should be passed by /// value. template class ArrayRef { public: typedef const T *iterator; typedef const T *const_iterator; typedef size_t size_type; typedef std::reverse_iterator reverse_iterator; private: /// The start of the array, in an external buffer. const T *Data; /// The number of elements. size_type Length; public: /// @name Constructors /// @{ /// Construct an empty ArrayRef. /*implicit*/ ArrayRef() : Data(nullptr), Length(0) {} /// Construct an empty ArrayRef from None. /*implicit*/ ArrayRef(NoneType) : Data(nullptr), Length(0) {} /// Construct an ArrayRef from a single element. /*implicit*/ ArrayRef(const T &OneElt) : Data(&OneElt), Length(1) {} /// Construct an ArrayRef from a pointer and length. /*implicit*/ ArrayRef(const T *data, size_t length) : Data(data), Length(length) {} /// Construct an ArrayRef from a range. ArrayRef(const T *begin, const T *end) : Data(begin), Length(end - begin) {} /// Construct an ArrayRef from a SmallVector. This is templated in order to /// avoid instantiating SmallVectorTemplateCommon whenever we /// copy-construct an ArrayRef. template /*implicit*/ ArrayRef(const SmallVectorTemplateCommon &Vec) : Data(Vec.data()), Length(Vec.size()) { } /// Construct an ArrayRef from a std::vector. template /*implicit*/ ArrayRef(const std::vector &Vec) : Data(Vec.data()), Length(Vec.size()) {} /// Construct an ArrayRef from a C array. template /*implicit*/ LLVM_CONSTEXPR ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {} /// Construct an ArrayRef from a std::initializer_list. /*implicit*/ ArrayRef(const std::initializer_list &Vec) : Data(Vec.begin() == Vec.end() ? (T*)nullptr : Vec.begin()), Length(Vec.size()) {} /// Construct an ArrayRef from ArrayRef. This uses SFINAE to /// ensure that only ArrayRefs of pointers can be converted. template ArrayRef( const ArrayRef &A, typename std::enable_if< std::is_convertible::value>::type * = nullptr) : Data(A.data()), Length(A.size()) {} /// Construct an ArrayRef from a SmallVector. This is /// templated in order to avoid instantiating SmallVectorTemplateCommon /// whenever we copy-construct an ArrayRef. template /*implicit*/ ArrayRef( const SmallVectorTemplateCommon &Vec, typename std::enable_if< std::is_convertible::value>::type * = nullptr) : Data(Vec.data()), Length(Vec.size()) { } /// Construct an ArrayRef from std::vector. This uses SFINAE /// to ensure that only vectors of pointers can be converted. template ArrayRef(const std::vector &Vec, typename std::enable_if< std::is_convertible::value>::type* = 0) : Data(Vec.data()), Length(Vec.size()) {} /// @} /// @name Simple Operations /// @{ iterator begin() const { return Data; } iterator end() const { return Data + Length; } reverse_iterator rbegin() const { return reverse_iterator(end()); } reverse_iterator rend() const { return reverse_iterator(begin()); } /// empty - Check if the array is empty. bool empty() const { return Length == 0; } const T *data() const { return Data; } /// size - Get the array size. size_t size() const { return Length; } /// front - Get the first element. const T &front() const { assert(!empty()); return Data[0]; } /// back - Get the last element. const T &back() const { assert(!empty()); return Data[Length-1]; } // copy - Allocate copy in Allocator and return ArrayRef to it. template ArrayRef copy(Allocator &A) { T *Buff = A.template Allocate(Length); std::uninitialized_copy(begin(), end(), Buff); return ArrayRef(Buff, Length); } /// equals - Check for element-wise equality. bool equals(ArrayRef RHS) const { if (Length != RHS.Length) return false; return std::equal(begin(), end(), RHS.begin()); } /// slice(n) - Chop off the first N elements of the array. ArrayRef slice(size_t N) const { assert(N <= size() && "Invalid specifier"); return ArrayRef(data()+N, size()-N); } /// slice(n, m) - Chop off the first N elements of the array, and keep M /// elements in the array. ArrayRef slice(size_t N, size_t M) const { assert(N+M <= size() && "Invalid specifier"); return ArrayRef(data()+N, M); } /// \brief Drop the first \p N elements of the array. ArrayRef drop_front(size_t N = 1) const { assert(size() >= N && "Dropping more elements than exist"); return slice(N, size() - N); } /// \brief Drop the last \p N elements of the array. ArrayRef drop_back(size_t N = 1) const { assert(size() >= N && "Dropping more elements than exist"); return slice(0, size() - N); } /// @} /// @name Operator Overloads /// @{ const T &operator[](size_t Index) const { assert(Index < Length && "Invalid index!"); return Data[Index]; } /// @} /// @name Expensive Operations /// @{ std::vector vec() const { return std::vector(Data, Data+Length); } /// @} /// @name Conversion operators /// @{ operator std::vector() const { return std::vector(Data, Data+Length); } /// @} }; /// MutableArrayRef - Represent a mutable reference to an array (0 or more /// elements consecutively in memory), i.e. a start pointer and a length. It /// allows various APIs to take and modify consecutive elements easily and /// conveniently. /// /// This class does not own the underlying data, it is expected to be used in /// situations where the data resides in some other buffer, whose lifetime /// extends past that of the MutableArrayRef. For this reason, it is not in /// general safe to store a MutableArrayRef. /// /// This is intended to be trivially copyable, so it should be passed by /// value. template class MutableArrayRef : public ArrayRef { public: typedef T *iterator; typedef std::reverse_iterator reverse_iterator; /// Construct an empty MutableArrayRef. /*implicit*/ MutableArrayRef() : ArrayRef() {} /// Construct an empty MutableArrayRef from None. /*implicit*/ MutableArrayRef(NoneType) : ArrayRef() {} /// Construct an MutableArrayRef from a single element. /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef(OneElt) {} /// Construct an MutableArrayRef from a pointer and length. /*implicit*/ MutableArrayRef(T *data, size_t length) : ArrayRef(data, length) {} /// Construct an MutableArrayRef from a range. MutableArrayRef(T *begin, T *end) : ArrayRef(begin, end) {} /// Construct an MutableArrayRef from a SmallVector. /*implicit*/ MutableArrayRef(SmallVectorImpl &Vec) : ArrayRef(Vec) {} /// Construct a MutableArrayRef from a std::vector. /*implicit*/ MutableArrayRef(std::vector &Vec) : ArrayRef(Vec) {} /// Construct an MutableArrayRef from a C array. template /*implicit*/ LLVM_CONSTEXPR MutableArrayRef(T (&Arr)[N]) : ArrayRef(Arr) {} T *data() const { return const_cast(ArrayRef::data()); } iterator begin() const { return data(); } iterator end() const { return data() + this->size(); } reverse_iterator rbegin() const { return reverse_iterator(end()); } reverse_iterator rend() const { return reverse_iterator(begin()); } /// front - Get the first element. T &front() const { assert(!this->empty()); return data()[0]; } /// back - Get the last element. T &back() const { assert(!this->empty()); return data()[this->size()-1]; } /// slice(n) - Chop off the first N elements of the array. MutableArrayRef slice(size_t N) const { assert(N <= this->size() && "Invalid specifier"); return MutableArrayRef(data()+N, this->size()-N); } /// slice(n, m) - Chop off the first N elements of the array, and keep M /// elements in the array. MutableArrayRef slice(size_t N, size_t M) const { assert(N+M <= this->size() && "Invalid specifier"); return MutableArrayRef(data()+N, M); } /// \brief Drop the first \p N elements of the array. MutableArrayRef drop_front(size_t N = 1) const { assert(this->size() >= N && "Dropping more elements than exist"); return slice(N, this->size() - N); } MutableArrayRef drop_back(size_t N = 1) const { assert(this->size() >= N && "Dropping more elements than exist"); return slice(0, this->size() - N); } /// @} /// @name Operator Overloads /// @{ T &operator[](size_t Index) const { assert(Index < this->size() && "Invalid index!"); return data()[Index]; } }; /// @name ArrayRef Convenience constructors /// @{ /// Construct an ArrayRef from a single element. template ArrayRef makeArrayRef(const T &OneElt) { return OneElt; } /// Construct an ArrayRef from a pointer and length. template ArrayRef makeArrayRef(const T *data, size_t length) { return ArrayRef(data, length); } /// Construct an ArrayRef from a range. template ArrayRef makeArrayRef(const T *begin, const T *end) { return ArrayRef(begin, end); } /// Construct an ArrayRef from a SmallVector. template ArrayRef makeArrayRef(const SmallVectorImpl &Vec) { return Vec; } /// Construct an ArrayRef from a SmallVector. template ArrayRef makeArrayRef(const SmallVector &Vec) { return Vec; } /// Construct an ArrayRef from a std::vector. template ArrayRef makeArrayRef(const std::vector &Vec) { return Vec; } /// Construct an ArrayRef from an ArrayRef (no-op) (const) template ArrayRef makeArrayRef(const ArrayRef &Vec) { return Vec; } /// Construct an ArrayRef from an ArrayRef (no-op) template ArrayRef &makeArrayRef(ArrayRef &Vec) { return Vec; } /// Construct an ArrayRef from a C array. template ArrayRef makeArrayRef(const T (&Arr)[N]) { return ArrayRef(Arr); } /// @} /// @name ArrayRef Comparison Operators /// @{ template inline bool operator==(ArrayRef LHS, ArrayRef RHS) { return LHS.equals(RHS); } template inline bool operator!=(ArrayRef LHS, ArrayRef RHS) { return !(LHS == RHS); } /// @} // ArrayRefs can be treated like a POD type. template struct isPodLike; template struct isPodLike > { static const bool value = true; }; template hash_code hash_value(ArrayRef S) { return hash_combine_range(S.begin(), S.end()); } } // end namespace llvm #endif // LLVM_ADT_ARRAYREF_H