//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains some functions that are useful for math stuff. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_MATHEXTRAS_H #define LLVM_SUPPORT_MATHEXTRAS_H #include "llvm/Compiler.h" #include #include #include #include #include #include #include #ifdef _MSC_VER #include #endif namespace llvm { /// \brief The behavior an operation has on an input of 0. enum ZeroBehavior { /// \brief The returned value is undefined. ZB_Undefined, /// \brief The returned value is numeric_limits::max() ZB_Max, /// \brief The returned value is numeric_limits::digits ZB_Width }; namespace detail { template struct LeadingZerosCounter { static std::size_t count(T Val, ZeroBehavior) { if (!Val) return std::numeric_limits::digits; // Bisection method. std::size_t ZeroBits = 0; for (T Shift = std::numeric_limits::digits >> 1; Shift; Shift >>= 1) { T Tmp = Val >> Shift; if (Tmp) Val = Tmp; else ZeroBits |= Shift; } return ZeroBits; } }; #if __GNUC__ >= 4 || defined(_MSC_VER) template struct LeadingZerosCounter { static std::size_t count(T Val, ZeroBehavior ZB) { if (ZB != ZB_Undefined && Val == 0) return 32; #if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0) return __builtin_clz(Val); #elif defined(_MSC_VER) unsigned long Index; _BitScanReverse(&Index, Val); return Index ^ 31; #endif } }; #if !defined(_MSC_VER) || defined(_M_X64) template struct LeadingZerosCounter { static std::size_t count(T Val, ZeroBehavior ZB) { if (ZB != ZB_Undefined && Val == 0) return 64; #if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0) return __builtin_clzll(Val); #elif defined(_MSC_VER) unsigned long Index; _BitScanReverse64(&Index, Val); return Index ^ 63; #endif } }; #endif #endif } // namespace detail /// \brief Count number of 0's from the most significant bit to the least /// stopping at the first 1. /// /// Only unsigned integral types are allowed. /// /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are /// valid arguments. template std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) { static_assert(std::numeric_limits::is_integer && !std::numeric_limits::is_signed, "Only unsigned integral types are allowed."); return detail::LeadingZerosCounter::count(Val, ZB); } /// \brief Get the index of the last set bit starting from the least /// significant bit. /// /// Only unsigned integral types are allowed. /// /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are /// valid arguments. template T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { if (ZB == ZB_Max && Val == 0) return std::numeric_limits::max(); // Use ^ instead of - because both gcc and llvm can remove the associated ^ // in the __builtin_clz intrinsic on x86. return countLeadingZeros(Val, ZB_Undefined) ^ (std::numeric_limits::digits - 1); } /// \brief Macro compressed bit reversal table for 256 bits. /// /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable static const unsigned char BitReverseTable256[256] = { #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) R6(0), R6(2), R6(1), R6(3) #undef R2 #undef R4 #undef R6 }; /// \brief Reverse the bits in \p Val. template T reverseBits(T Val) { unsigned char in[sizeof(Val)]; unsigned char out[sizeof(Val)]; std::memcpy(in, &Val, sizeof(Val)); for (unsigned i = 0; i < sizeof(Val); ++i) out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; std::memcpy(&Val, out, sizeof(Val)); return Val; } // NOTE: The following support functions use the _32/_64 extensions instead of // type overloading so that signed and unsigned integers can be used without // ambiguity. /// Hi_32 - This function returns the high 32 bits of a 64 bit value. inline uint32_t Hi_32(uint64_t Value) { return static_cast(Value >> 32); } /// Lo_32 - This function returns the low 32 bits of a 64 bit value. inline uint32_t Lo_32(uint64_t Value) { return static_cast(Value); } /// Make_64 - This functions makes a 64-bit integer from a high / low pair of /// 32-bit integers. inline uint64_t Make_64(uint32_t High, uint32_t Low) { return ((uint64_t)High << 32) | (uint64_t)Low; } /// isInt - Checks if an integer fits into the given bit width. template inline bool isInt(int64_t x) { return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1))); } // Template specializations to get better code for common cases. template<> inline bool isInt<8>(int64_t x) { return static_cast(x) == x; } template<> inline bool isInt<16>(int64_t x) { return static_cast(x) == x; } template<> inline bool isInt<32>(int64_t x) { return static_cast(x) == x; } /// isShiftedInt - Checks if a signed integer is an N bit number shifted /// left by S. template inline bool isShiftedInt(int64_t x) { return isInt(x) && (x % (1< inline bool isUInt(uint64_t x) { return N >= 64 || x < (UINT64_C(1)<<(N)); } // Template specializations to get better code for common cases. template<> inline bool isUInt<8>(uint64_t x) { return static_cast(x) == x; } template<> inline bool isUInt<16>(uint64_t x) { return static_cast(x) == x; } template<> inline bool isUInt<32>(uint64_t x) { return static_cast(x) == x; } /// isShiftedUInt - Checks if a unsigned integer is an N bit number shifted /// left by S. template inline bool isShiftedUInt(uint64_t x) { return isUInt(x) && (x % (1< 0 && N <= 64 && "integer width out of range"); return (UINT64_C(1) << N) - 1; } /// Gets the minimum value for a N-bit signed integer. inline int64_t minIntN(int64_t N) { assert(N > 0 && N <= 64 && "integer width out of range"); return -(INT64_C(1)<<(N-1)); } /// Gets the maximum value for a N-bit signed integer. inline int64_t maxIntN(int64_t N) { assert(N > 0 && N <= 64 && "integer width out of range"); return (INT64_C(1)<<(N-1)) - 1; } /// isUIntN - Checks if an unsigned integer fits into the given (dynamic) /// bit width. inline bool isUIntN(unsigned N, uint64_t x) { return N >= 64 || x <= maxUIntN(N); } /// isIntN - Checks if an signed integer fits into the given (dynamic) /// bit width. inline bool isIntN(unsigned N, int64_t x) { return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); } /// isMask_32 - This function returns true if the argument is a non-empty /// sequence of ones starting at the least significant bit with the remainder /// zero (32 bit version). Ex. isMask_32(0x0000FFFFU) == true. inline bool isMask_32(uint32_t Value) { return Value && ((Value + 1) & Value) == 0; } /// isMask_64 - This function returns true if the argument is a non-empty /// sequence of ones starting at the least significant bit with the remainder /// zero (64 bit version). inline bool isMask_64(uint64_t Value) { return Value && ((Value + 1) & Value) == 0; } /// isShiftedMask_32 - This function returns true if the argument contains a /// non-empty sequence of ones with the remainder zero (32 bit version.) /// Ex. isShiftedMask_32(0x0000FF00U) == true. inline bool isShiftedMask_32(uint32_t Value) { return Value && isMask_32((Value - 1) | Value); } /// isShiftedMask_64 - This function returns true if the argument contains a /// non-empty sequence of ones with the remainder zero (64 bit version.) inline bool isShiftedMask_64(uint64_t Value) { return Value && isMask_64((Value - 1) | Value); } /// isPowerOf2_32 - This function returns true if the argument is a power of /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) inline bool isPowerOf2_32(uint32_t Value) { return Value && !(Value & (Value - 1)); } /// isPowerOf2_64 - This function returns true if the argument is a power of two /// > 0 (64 bit edition.) inline bool isPowerOf2_64(uint64_t Value) { return Value && !(Value & (Value - int64_t(1L))); } /// \brief Count the number of ones from the most significant bit to the first /// zero bit. /// /// Ex. CountLeadingOnes(0xFF0FFF00) == 8. /// Only unsigned integral types are allowed. /// /// \param ZB the behavior on an input of all ones. Only ZB_Width and /// ZB_Undefined are valid arguments. template std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) { static_assert(std::numeric_limits::is_integer && !std::numeric_limits::is_signed, "Only unsigned integral types are allowed."); return countLeadingZeros(~Value, ZB); } namespace detail { template struct PopulationCounter { static unsigned count(T Value) { // Generic version, forward to 32 bits. static_assert(SizeOfT <= 4, "Not implemented!"); #if __GNUC__ >= 4 return __builtin_popcount(Value); #else uint32_t v = Value; v = v - ((v >> 1) & 0x55555555); v = (v & 0x33333333) + ((v >> 2) & 0x33333333); return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; #endif } }; template struct PopulationCounter { static unsigned count(T Value) { #if __GNUC__ >= 4 return __builtin_popcountll(Value); #else uint64_t v = Value; v = v - ((v >> 1) & 0x5555555555555555ULL); v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); #endif } }; } // namespace detail /// \brief Count the number of set bits in a value. /// Ex. countPopulation(0xF000F000) = 8 /// Returns 0 if the word is zero. template inline unsigned countPopulation(T Value) { static_assert(std::numeric_limits::is_integer && !std::numeric_limits::is_signed, "Only unsigned integral types are allowed."); return detail::PopulationCounter::count(Value); } /// Log2 - This function returns the log base 2 of the specified value inline double Log2(double Value) { #if defined(__ANDROID_API__) && __ANDROID_API__ < 18 return __builtin_log(Value) / __builtin_log(2.0); #else return std::log2(Value); #endif } /// Log2_32 - This function returns the floor log base 2 of the specified value, /// -1 if the value is zero. (32 bit edition.) /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 inline unsigned Log2_32(uint32_t Value) { return 31 - countLeadingZeros(Value); } /// Log2_64 - This function returns the floor log base 2 of the specified value, /// -1 if the value is zero. (64 bit edition.) inline unsigned Log2_64(uint64_t Value) { return 63 - countLeadingZeros(Value); } /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified /// value, 32 if the value is zero. (32 bit edition). /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 inline unsigned Log2_32_Ceil(uint32_t Value) { return 32 - countLeadingZeros(Value - 1); } /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified /// value, 64 if the value is zero. (64 bit edition.) inline unsigned Log2_64_Ceil(uint64_t Value) { return 64 - countLeadingZeros(Value - 1); } /// GreatestCommonDivisor64 - Return the greatest common divisor of the two /// values using Euclid's algorithm. inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { while (B) { uint64_t T = B; B = A % B; A = T; } return A; } /// BitsToDouble - This function takes a 64-bit integer and returns the bit /// equivalent double. inline double BitsToDouble(uint64_t Bits) { union { uint64_t L; double D; } T; T.L = Bits; return T.D; } /// BitsToFloat - This function takes a 32-bit integer and returns the bit /// equivalent float. inline float BitsToFloat(uint32_t Bits) { union { uint32_t I; float F; } T; T.I = Bits; return T.F; } /// DoubleToBits - This function takes a double and returns the bit /// equivalent 64-bit integer. Note that copying doubles around /// changes the bits of NaNs on some hosts, notably x86, so this /// routine cannot be used if these bits are needed. inline uint64_t DoubleToBits(double Double) { union { uint64_t L; double D; } T; T.D = Double; return T.L; } /// FloatToBits - This function takes a float and returns the bit /// equivalent 32-bit integer. Note that copying floats around /// changes the bits of NaNs on some hosts, notably x86, so this /// routine cannot be used if these bits are needed. inline uint32_t FloatToBits(float Float) { union { uint32_t I; float F; } T; T.F = Float; return T.I; } /// MinAlign - A and B are either alignments or offsets. Return the minimum /// alignment that may be assumed after adding the two together. inline uint64_t MinAlign(uint64_t A, uint64_t B) { // The largest power of 2 that divides both A and B. // // Replace "-Value" by "1+~Value" in the following commented code to avoid // MSVC warning C4146 // return (A | B) & -(A | B); return (A | B) & (1 + ~(A | B)); } /// \brief Aligns \c Addr to \c Alignment bytes, rounding up. /// /// Alignment should be a power of two. This method rounds up, so /// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8. inline uintptr_t alignAddr(const void *Addr, size_t Alignment) { assert(Alignment && isPowerOf2_64((uint64_t)Alignment) && "Alignment is not a power of two!"); assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr); return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1)); } /// \brief Returns the necessary adjustment for aligning \c Ptr to \c Alignment /// bytes, rounding up. inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) { return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr; } /// NextPowerOf2 - Returns the next power of two (in 64-bits) /// that is strictly greater than A. Returns zero on overflow. inline uint64_t NextPowerOf2(uint64_t A) { A |= (A >> 1); A |= (A >> 2); A |= (A >> 4); A |= (A >> 8); A |= (A >> 16); A |= (A >> 32); return A + 1; } /// Returns the power of two which is less than or equal to the given value. /// Essentially, it is a floor operation across the domain of powers of two. inline uint64_t PowerOf2Floor(uint64_t A) { if (!A) return 0; return 1ull << (63 - countLeadingZeros(A, ZB_Undefined)); } /// Returns the next integer (mod 2**64) that is greater than or equal to /// \p Value and is a multiple of \p Align. \p Align must be non-zero. /// /// If non-zero \p Skew is specified, the return value will be a minimal /// integer that is greater than or equal to \p Value and equal to /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than /// \p Align, its value is adjusted to '\p Skew mod \p Align'. /// /// Examples: /// \code /// alignTo(5, 8) = 8 /// alignTo(17, 8) = 24 /// alignTo(~0LL, 8) = 0 /// alignTo(321, 255) = 510 /// /// alignTo(5, 8, 7) = 7 /// alignTo(17, 8, 1) = 17 /// alignTo(~0LL, 8, 3) = 3 /// alignTo(321, 255, 42) = 552 /// \endcode inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { Skew %= Align; return (Value + Align - 1 - Skew) / Align * Align + Skew; } /// Returns the largest uint64_t less than or equal to \p Value and is /// \p Skew mod \p Align. \p Align must be non-zero inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { Skew %= Align; return (Value - Skew) / Align * Align + Skew; } /// Returns the offset to the next integer (mod 2**64) that is greater than /// or equal to \p Value and is a multiple of \p Align. \p Align must be /// non-zero. inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) { return alignTo(Value, Align) - Value; } /// SignExtend32 - Sign extend B-bit number x to 32-bit int. /// Usage int32_t r = SignExtend32<5>(x); template inline int32_t SignExtend32(uint32_t x) { return int32_t(x << (32 - B)) >> (32 - B); } /// \brief Sign extend number in the bottom B bits of X to a 32-bit int. /// Requires 0 < B <= 32. inline int32_t SignExtend32(uint32_t X, unsigned B) { return int32_t(X << (32 - B)) >> (32 - B); } /// SignExtend64 - Sign extend B-bit number x to 64-bit int. /// Usage int64_t r = SignExtend64<5>(x); template inline int64_t SignExtend64(uint64_t x) { return int64_t(x << (64 - B)) >> (64 - B); } /// \brief Sign extend number in the bottom B bits of X to a 64-bit int. /// Requires 0 < B <= 64. inline int64_t SignExtend64(uint64_t X, unsigned B) { return int64_t(X << (64 - B)) >> (64 - B); } /// \brief Subtract two unsigned integers, X and Y, of type T and return their /// absolute value. template typename std::enable_if::value, T>::type AbsoluteDifference(T X, T Y) { return std::max(X, Y) - std::min(X, Y); } /// \brief Add two unsigned integers, X and Y, of type T. /// Clamp the result to the maximum representable value of T on overflow. /// ResultOverflowed indicates if the result is larger than the maximum /// representable value of type T. template typename std::enable_if::value, T>::type SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { bool Dummy; bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; // Hacker's Delight, p. 29 T Z = X + Y; Overflowed = (Z < X || Z < Y); if (Overflowed) return std::numeric_limits::max(); else return Z; } /// \brief Multiply two unsigned integers, X and Y, of type T. /// Clamp the result to the maximum representable value of T on overflow. /// ResultOverflowed indicates if the result is larger than the maximum /// representable value of type T. template typename std::enable_if::value, T>::type SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { bool Dummy; bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; // Hacker's Delight, p. 30 has a different algorithm, but we don't use that // because it fails for uint16_t (where multiplication can have undefined // behavior due to promotion to int), and requires a division in addition // to the multiplication. Overflowed = false; // Log2(Z) would be either Log2Z or Log2Z + 1. // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z // will necessarily be less than Log2Max as desired. int Log2Z = Log2_64(X) + Log2_64(Y); const T Max = std::numeric_limits::max(); int Log2Max = Log2_64(Max); if (Log2Z < Log2Max) { return X * Y; } if (Log2Z > Log2Max) { Overflowed = true; return Max; } // We're going to use the top bit, and maybe overflow one // bit past it. Multiply all but the bottom bit then add // that on at the end. T Z = (X >> 1) * Y; if (Z & ~(Max >> 1)) { Overflowed = true; return Max; } Z <<= 1; if (X & 1) return SaturatingAdd(Z, Y, ResultOverflowed); return Z; } /// \brief Multiply two unsigned integers, X and Y, and add the unsigned /// integer, A to the product. Clamp the result to the maximum representable /// value of T on overflow. ResultOverflowed indicates if the result is larger /// than the maximum representable value of type T. /// Note that this is purely a convenience function as there is no distinction /// where overflow occurred in a 'fused' multiply-add for unsigned numbers. template typename std::enable_if::value, T>::type SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { bool Dummy; bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; T Product = SaturatingMultiply(X, Y, &Overflowed); if (Overflowed) return Product; return SaturatingAdd(A, Product, &Overflowed); } } // namespace llvm #endif