//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains some templates that are useful if you are working with the // STL at all. // // No library is required when using these functions. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_STLEXTRAS_H #define LLVM_ADT_STLEXTRAS_H #include // for std::all_of #include #include // for std::size_t #include // for qsort #include #include #include #include // for std::pair #include "llvm/iterator_range.h" #include "llvm/Compiler.h" namespace llvm { //===----------------------------------------------------------------------===// // Extra additions to //===----------------------------------------------------------------------===// template struct identity : public std::unary_function { Ty &operator()(Ty &self) const { return self; } const Ty &operator()(const Ty &self) const { return self; } }; template struct less_ptr : public std::binary_function { bool operator()(const Ty* left, const Ty* right) const { return *left < *right; } }; template struct greater_ptr : public std::binary_function { bool operator()(const Ty* left, const Ty* right) const { return *right < *left; } }; /// An efficient, type-erasing, non-owning reference to a callable. This is /// intended for use as the type of a function parameter that is not used /// after the function in question returns. /// /// This class does not own the callable, so it is not in general safe to store /// a function_ref. template class function_ref; template class function_ref { Ret (*callback)(intptr_t callable, Params ...params); intptr_t callable; template static Ret callback_fn(intptr_t callable, Params ...params) { return (*reinterpret_cast(callable))( std::forward(params)...); } public: template function_ref(Callable &&callable, typename std::enable_if< !std::is_same::type, function_ref>::value>::type * = nullptr) : callback(callback_fn::type>), callable(reinterpret_cast(&callable)) {} Ret operator()(Params ...params) const { return callback(callable, std::forward(params)...); } }; // deleter - Very very very simple method that is used to invoke operator // delete on something. It is used like this: // // for_each(V.begin(), B.end(), deleter); // template inline void deleter(T *Ptr) { delete Ptr; } //===----------------------------------------------------------------------===// // Extra additions to //===----------------------------------------------------------------------===// // mapped_iterator - This is a simple iterator adapter that causes a function to // be dereferenced whenever operator* is invoked on the iterator. // template class mapped_iterator { RootIt current; UnaryFunc Fn; public: typedef typename std::iterator_traits::iterator_category iterator_category; typedef typename std::iterator_traits::difference_type difference_type; typedef typename std::result_of< UnaryFunc(decltype(*std::declval()))> ::type value_type; typedef void pointer; //typedef typename UnaryFunc::result_type *pointer; typedef void reference; // Can't modify value returned by fn typedef RootIt iterator_type; inline const RootIt &getCurrent() const { return current; } inline const UnaryFunc &getFunc() const { return Fn; } inline explicit mapped_iterator(const RootIt &I, UnaryFunc F) : current(I), Fn(F) {} inline value_type operator*() const { // All this work to do this return Fn(*current); // little change } mapped_iterator &operator++() { ++current; return *this; } mapped_iterator &operator--() { --current; return *this; } mapped_iterator operator++(int) { mapped_iterator __tmp = *this; ++current; return __tmp; } mapped_iterator operator--(int) { mapped_iterator __tmp = *this; --current; return __tmp; } mapped_iterator operator+(difference_type n) const { return mapped_iterator(current + n, Fn); } mapped_iterator &operator+=(difference_type n) { current += n; return *this; } mapped_iterator operator-(difference_type n) const { return mapped_iterator(current - n, Fn); } mapped_iterator &operator-=(difference_type n) { current -= n; return *this; } reference operator[](difference_type n) const { return *(*this + n); } bool operator!=(const mapped_iterator &X) const { return !operator==(X); } bool operator==(const mapped_iterator &X) const { return current == X.current; } bool operator<(const mapped_iterator &X) const { return current < X.current; } difference_type operator-(const mapped_iterator &X) const { return current - X.current; } }; template inline mapped_iterator operator+(typename mapped_iterator::difference_type N, const mapped_iterator &X) { return mapped_iterator(X.getCurrent() - N, X.getFunc()); } // map_iterator - Provide a convenient way to create mapped_iterators, just like // make_pair is useful for creating pairs... // template inline mapped_iterator map_iterator(const ItTy &I, FuncTy F) { return mapped_iterator(I, F); } /// \brief Metafunction to determine if type T has a member called rbegin(). template struct has_rbegin { template static char(&f(const U &, decltype(&U::rbegin)))[1]; static char(&f(...))[2]; const static bool value = sizeof(f(std::declval(), nullptr)) == 1; }; // Returns an iterator_range over the given container which iterates in reverse. // Note that the container must have rbegin()/rend() methods for this to work. template auto reverse(ContainerTy &&C, typename std::enable_if::value>::type * = nullptr) -> decltype(make_range(C.rbegin(), C.rend())) { return make_range(C.rbegin(), C.rend()); } // Returns a std::reverse_iterator wrapped around the given iterator. template std::reverse_iterator make_reverse_iterator(IteratorTy It) { return std::reverse_iterator(It); } // Returns an iterator_range over the given container which iterates in reverse. // Note that the container must have begin()/end() methods which return // bidirectional iterators for this to work. template auto reverse( ContainerTy &&C, typename std::enable_if::value>::type * = nullptr) -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)), llvm::make_reverse_iterator(std::begin(C)))) { return make_range(llvm::make_reverse_iterator(std::end(C)), llvm::make_reverse_iterator(std::begin(C))); } //===----------------------------------------------------------------------===// // Extra additions to //===----------------------------------------------------------------------===// /// \brief Function object to check whether the first component of a std::pair /// compares less than the first component of another std::pair. struct less_first { template bool operator()(const T &lhs, const T &rhs) const { return lhs.first < rhs.first; } }; /// \brief Function object to check whether the second component of a std::pair /// compares less than the second component of another std::pair. struct less_second { template bool operator()(const T &lhs, const T &rhs) const { return lhs.second < rhs.second; } }; // A subset of N3658. More stuff can be added as-needed. /// \brief Represents a compile-time sequence of integers. template struct integer_sequence { typedef T value_type; static LLVM_CONSTEXPR size_t size() { return sizeof...(I); } }; /// \brief Alias for the common case of a sequence of size_ts. template struct index_sequence : integer_sequence {}; template struct build_index_impl : build_index_impl {}; template struct build_index_impl<0, I...> : index_sequence {}; /// \brief Creates a compile-time integer sequence for a parameter pack. template struct index_sequence_for : build_index_impl {}; //===----------------------------------------------------------------------===// // Extra additions for arrays //===----------------------------------------------------------------------===// /// Find the length of an array. template LLVM_CONSTEXPR inline size_t array_lengthof(T (&)[N]) { return N; } /// Adapt std::less for array_pod_sort. template inline int array_pod_sort_comparator(const void *P1, const void *P2) { if (std::less()(*reinterpret_cast(P1), *reinterpret_cast(P2))) return -1; if (std::less()(*reinterpret_cast(P2), *reinterpret_cast(P1))) return 1; return 0; } /// get_array_pod_sort_comparator - This is an internal helper function used to /// get type deduction of T right. template inline int (*get_array_pod_sort_comparator(const T &)) (const void*, const void*) { return array_pod_sort_comparator; } /// array_pod_sort - This sorts an array with the specified start and end /// extent. This is just like std::sort, except that it calls qsort instead of /// using an inlined template. qsort is slightly slower than std::sort, but /// most sorts are not performance critical in LLVM and std::sort has to be /// template instantiated for each type, leading to significant measured code /// bloat. This function should generally be used instead of std::sort where /// possible. /// /// This function assumes that you have simple POD-like types that can be /// compared with std::less and can be moved with memcpy. If this isn't true, /// you should use std::sort. /// /// NOTE: If qsort_r were portable, we could allow a custom comparator and /// default to std::less. template inline void array_pod_sort(IteratorTy Start, IteratorTy End) { // Don't inefficiently call qsort with one element or trigger undefined // behavior with an empty sequence. auto NElts = End - Start; if (NElts <= 1) return; qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); } template inline void array_pod_sort( IteratorTy Start, IteratorTy End, int (*Compare)( const typename std::iterator_traits::value_type *, const typename std::iterator_traits::value_type *)) { // Don't inefficiently call qsort with one element or trigger undefined // behavior with an empty sequence. auto NElts = End - Start; if (NElts <= 1) return; qsort(&*Start, NElts, sizeof(*Start), reinterpret_cast(Compare)); } //===----------------------------------------------------------------------===// // Extra additions to //===----------------------------------------------------------------------===// /// For a container of pointers, deletes the pointers and then clears the /// container. template void DeleteContainerPointers(Container &C) { for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I) delete *I; C.clear(); } /// In a container of pairs (usually a map) whose second element is a pointer, /// deletes the second elements and then clears the container. template void DeleteContainerSeconds(Container &C) { for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I) delete I->second; C.clear(); } /// Provide wrappers to std::all_of which take ranges instead of having to pass /// begin/end explicitly. template bool all_of(R &&Range, UnaryPredicate &&P) { return std::all_of(Range.begin(), Range.end(), std::forward(P)); } /// Provide wrappers to std::any_of which take ranges instead of having to pass /// begin/end explicitly. template bool any_of(R &&Range, UnaryPredicate &&P) { return std::any_of(Range.begin(), Range.end(), std::forward(P)); } /// Provide wrappers to std::none_of which take ranges instead of having to pass /// begin/end explicitly. template bool none_of(R &&Range, UnaryPredicate &&P) { return std::none_of(Range.begin(), Range.end(), std::forward(P)); } /// Provide wrappers to std::find which take ranges instead of having to pass /// begin/end explicitly. template auto find(R &&Range, const T &val) -> decltype(Range.begin()) { return std::find(Range.begin(), Range.end(), val); } /// Provide wrappers to std::find_if which take ranges instead of having to pass /// begin/end explicitly. template auto find_if(R &&Range, const T &Pred) -> decltype(Range.begin()) { return std::find_if(Range.begin(), Range.end(), Pred); } /// Provide wrappers to std::remove_if which take ranges instead of having to /// pass begin/end explicitly. template auto remove_if(R &&Range, UnaryPredicate &&P) -> decltype(Range.begin()) { return std::remove_if(Range.begin(), Range.end(), P); } /// Wrapper function around std::find to detect if an element exists /// in a container. template bool is_contained(R &&Range, const E &Element) { return std::find(Range.begin(), Range.end(), Element) != Range.end(); } /// Wrapper function around std::count_if to count the number of times an /// element satisfying a given predicate occurs in a range. template auto count_if(R &&Range, UnaryPredicate &&P) -> typename std::iterator_traits::difference_type { return std::count_if(Range.begin(), Range.end(), P); } /// Wrapper function around std::transform to apply a function to a range and /// store the result elsewhere. template OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate &&P) { return std::transform(Range.begin(), Range.end(), d_first, std::forward(P)); } //===----------------------------------------------------------------------===// // Extra additions to //===----------------------------------------------------------------------===// // Implement make_unique according to N3656. /// \brief Constructs a `new T()` with the given args and returns a /// `unique_ptr` which owns the object. /// /// Example: /// /// auto p = make_unique(); /// auto p = make_unique>(0, 1); template typename std::enable_if::value, std::unique_ptr>::type make_unique(Args &&... args) { return std::unique_ptr(new T(std::forward(args)...)); } /// \brief Constructs a `new T[n]` with the given args and returns a /// `unique_ptr` which owns the object. /// /// \param n size of the new array. /// /// Example: /// /// auto p = make_unique(2); // value-initializes the array with 0's. template typename std::enable_if::value && std::extent::value == 0, std::unique_ptr>::type make_unique(size_t n) { return std::unique_ptr(new typename std::remove_extent::type[n]()); } /// This function isn't used and is only here to provide better compile errors. template typename std::enable_if::value != 0>::type make_unique(Args &&...) = delete; struct FreeDeleter { void operator()(void* v) { ::free(v); } }; template struct pair_hash { size_t operator()(const std::pair &P) const { return std::hash()(P.first) * 31 + std::hash()(P.second); } }; /// A functor like C++14's std::less in its absence. struct less { template bool operator()(A &&a, B &&b) const { return std::forward(a) < std::forward(b); } }; /// A functor like C++14's std::equal in its absence. struct equal { template bool operator()(A &&a, B &&b) const { return std::forward(a) == std::forward(b); } }; /// Binary functor that adapts to any other binary functor after dereferencing /// operands. template struct deref { T func; // Could be further improved to cope with non-derivable functors and // non-binary functors (should be a variadic template member function // operator()). template auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) { assert(lhs); assert(rhs); return func(*lhs, *rhs); } }; } // End llvm namespace #endif