use curve25519_dalek::edwards::EdwardsPoint; use x25519_dalek::*; #[test] fn byte_basepoint_matches_edwards_scalar_mul() { let mut scalar_bytes = [0x37; 32]; for i in 0..32 { scalar_bytes[i] += 2; let result = x25519(scalar_bytes, X25519_BASEPOINT_BYTES); let expected = EdwardsPoint::mul_base_clamped(scalar_bytes) .to_montgomery() .to_bytes(); assert_eq!(result, expected); } } #[test] #[cfg(feature = "serde")] fn serde_bincode_public_key_roundtrip() { use bincode; let public_key = PublicKey::from(X25519_BASEPOINT_BYTES); let encoded = bincode::serialize(&public_key).unwrap(); let decoded: PublicKey = bincode::deserialize(&encoded).unwrap(); assert_eq!(encoded.len(), 32); assert_eq!(decoded.as_bytes(), public_key.as_bytes()); } #[test] #[cfg(feature = "serde")] fn serde_bincode_public_key_matches_from_bytes() { use bincode; let expected = PublicKey::from(X25519_BASEPOINT_BYTES); let decoded: PublicKey = bincode::deserialize(&X25519_BASEPOINT_BYTES).unwrap(); assert_eq!(decoded.as_bytes(), expected.as_bytes()); } #[test] #[cfg(feature = "serde")] fn serde_bincode_static_secret_roundtrip() { use bincode; let static_secret = StaticSecret::from([0x24; 32]); let encoded = bincode::serialize(&static_secret).unwrap(); let decoded: StaticSecret = bincode::deserialize(&encoded).unwrap(); assert_eq!(encoded.len(), 32); assert_eq!(decoded.to_bytes(), static_secret.to_bytes()); } #[test] #[cfg(feature = "serde")] fn serde_bincode_static_secret_matches_from_bytes() { use bincode; let expected = StaticSecret::from([0x24; 32]); let decoded: StaticSecret = bincode::deserialize(&[0x24; 32]).unwrap(); assert_eq!(decoded.to_bytes(), expected.to_bytes()); } fn do_rfc7748_ladder_test1(input_scalar: [u8; 32], input_point: [u8; 32], expected: [u8; 32]) { let result = x25519(input_scalar, input_point); assert_eq!(result, expected); } #[test] fn rfc7748_ladder_test1_vectorset1() { let input_scalar: [u8; 32] = [ 0xa5, 0x46, 0xe3, 0x6b, 0xf0, 0x52, 0x7c, 0x9d, 0x3b, 0x16, 0x15, 0x4b, 0x82, 0x46, 0x5e, 0xdd, 0x62, 0x14, 0x4c, 0x0a, 0xc1, 0xfc, 0x5a, 0x18, 0x50, 0x6a, 0x22, 0x44, 0xba, 0x44, 0x9a, 0xc4, ]; let input_point: [u8; 32] = [ 0xe6, 0xdb, 0x68, 0x67, 0x58, 0x30, 0x30, 0xdb, 0x35, 0x94, 0xc1, 0xa4, 0x24, 0xb1, 0x5f, 0x7c, 0x72, 0x66, 0x24, 0xec, 0x26, 0xb3, 0x35, 0x3b, 0x10, 0xa9, 0x03, 0xa6, 0xd0, 0xab, 0x1c, 0x4c, ]; let expected: [u8; 32] = [ 0xc3, 0xda, 0x55, 0x37, 0x9d, 0xe9, 0xc6, 0x90, 0x8e, 0x94, 0xea, 0x4d, 0xf2, 0x8d, 0x08, 0x4f, 0x32, 0xec, 0xcf, 0x03, 0x49, 0x1c, 0x71, 0xf7, 0x54, 0xb4, 0x07, 0x55, 0x77, 0xa2, 0x85, 0x52, ]; do_rfc7748_ladder_test1(input_scalar, input_point, expected); } #[test] fn rfc7748_ladder_test1_vectorset2() { let input_scalar: [u8; 32] = [ 0x4b, 0x66, 0xe9, 0xd4, 0xd1, 0xb4, 0x67, 0x3c, 0x5a, 0xd2, 0x26, 0x91, 0x95, 0x7d, 0x6a, 0xf5, 0xc1, 0x1b, 0x64, 0x21, 0xe0, 0xea, 0x01, 0xd4, 0x2c, 0xa4, 0x16, 0x9e, 0x79, 0x18, 0xba, 0x0d, ]; let input_point: [u8; 32] = [ 0xe5, 0x21, 0x0f, 0x12, 0x78, 0x68, 0x11, 0xd3, 0xf4, 0xb7, 0x95, 0x9d, 0x05, 0x38, 0xae, 0x2c, 0x31, 0xdb, 0xe7, 0x10, 0x6f, 0xc0, 0x3c, 0x3e, 0xfc, 0x4c, 0xd5, 0x49, 0xc7, 0x15, 0xa4, 0x93, ]; let expected: [u8; 32] = [ 0x95, 0xcb, 0xde, 0x94, 0x76, 0xe8, 0x90, 0x7d, 0x7a, 0xad, 0xe4, 0x5c, 0xb4, 0xb8, 0x73, 0xf8, 0x8b, 0x59, 0x5a, 0x68, 0x79, 0x9f, 0xa1, 0x52, 0xe6, 0xf8, 0xf7, 0x64, 0x7a, 0xac, 0x79, 0x57, ]; do_rfc7748_ladder_test1(input_scalar, input_point, expected); } #[test] #[ignore] // Run only if you want to burn a lot of CPU doing 1,000,000 DH operations fn rfc7748_ladder_test2() { use curve25519_dalek::constants::X25519_BASEPOINT; let mut k: [u8; 32] = X25519_BASEPOINT.0; let mut u: [u8; 32] = X25519_BASEPOINT.0; let mut result: [u8; 32]; macro_rules! do_iterations { ($n:expr) => { for _ in 0..$n { result = x25519(k, u); // OBVIOUS THING THAT I'M GOING TO NOTE ANYWAY BECAUSE I'VE // SEEN PEOPLE DO THIS WITH GOLANG'S STDLIB AND YOU SURE AS // HELL SHOULDN'T DO HORRIBLY STUPID THINGS LIKE THIS WITH // MY LIBRARY: // // NEVER EVER TREAT SCALARS AS POINTS AND/OR VICE VERSA. // // ↓↓ DON'T DO THIS ↓↓ u = k.clone(); k = result; } }; } // After one iteration: // 422c8e7a6227d7bca1350b3e2bb7279f7897b87bb6854b783c60e80311ae3079 // After 1,000 iterations: // 684cf59ba83309552800ef566f2f4d3c1c3887c49360e3875f2eb94d99532c51 // After 1,000,000 iterations: // 7c3911e0ab2586fd864497297e575e6f3bc601c0883c30df5f4dd2d24f665424 do_iterations!(1); assert_eq!( k, [ 0x42, 0x2c, 0x8e, 0x7a, 0x62, 0x27, 0xd7, 0xbc, 0xa1, 0x35, 0x0b, 0x3e, 0x2b, 0xb7, 0x27, 0x9f, 0x78, 0x97, 0xb8, 0x7b, 0xb6, 0x85, 0x4b, 0x78, 0x3c, 0x60, 0xe8, 0x03, 0x11, 0xae, 0x30, 0x79, ] ); do_iterations!(999); assert_eq!( k, [ 0x68, 0x4c, 0xf5, 0x9b, 0xa8, 0x33, 0x09, 0x55, 0x28, 0x00, 0xef, 0x56, 0x6f, 0x2f, 0x4d, 0x3c, 0x1c, 0x38, 0x87, 0xc4, 0x93, 0x60, 0xe3, 0x87, 0x5f, 0x2e, 0xb9, 0x4d, 0x99, 0x53, 0x2c, 0x51, ] ); do_iterations!(999_000); assert_eq!( k, [ 0x7c, 0x39, 0x11, 0xe0, 0xab, 0x25, 0x86, 0xfd, 0x86, 0x44, 0x97, 0x29, 0x7e, 0x57, 0x5e, 0x6f, 0x3b, 0xc6, 0x01, 0xc0, 0x88, 0x3c, 0x30, 0xdf, 0x5f, 0x4d, 0xd2, 0xd2, 0x4f, 0x66, 0x54, 0x24, ] ); } mod rand_core { use super::*; use ::rand_core::OsRng; #[test] fn ephemeral_from_rng() { #[allow(deprecated)] EphemeralSecret::new(OsRng); EphemeralSecret::random_from_rng(OsRng); } #[test] #[cfg(feature = "reusable_secrets")] fn reusable_from_rng() { #[allow(deprecated)] ReusableSecret::new(OsRng); ReusableSecret::random_from_rng(OsRng); } #[test] #[cfg(feature = "static_secrets")] fn static_from_rng() { #[allow(deprecated)] StaticSecret::new(OsRng); StaticSecret::random_from_rng(OsRng); } } #[cfg(feature = "getrandom")] mod getrandom { use super::*; #[test] fn ephemeral_random() { EphemeralSecret::random(); } #[test] #[cfg(feature = "reusable_secrets")] fn reusable_random() { ReusableSecret::random(); } #[test] #[cfg(feature = "static_secrets")] fn static_random() { StaticSecret::random(); } }