# Problem 375: Minimum of subsequences Let Sn be an integer sequence produced with the following pseudo-random number generator: S0 =  290797  Sn+1 =  Sn2 mod 50515093 Let A(i, j) be the minimum of the numbers Si, Si+1, ... , Sj for i ≤ j. Let M(N) = ΣA(i, j) for 1 ≤ i ≤ j ≤ N. We can verify that M(10) = 432256955 and M(10 000) = 3264567774119. Find M(2 000 000 000).