# Problem 378: Triangle Triples Let T(n) be the nth triangle number, so T(n) = n (n+1)2 . Let dT(n) be the number of divisors of T(n). E.g.: T(7) = 28 and dT(7) = 6. Let Tr(n) be the number of triples (i, j, k) such that 1 ≤ i < j < k ≤ n and dT(i) > dT(j) > dT(k). Tr(20) = 14, Tr(100) = 5772 and Tr(1000) = 11174776. Find Tr(60 000 000). Give the last 18 digits of your answer.