# Problem 404: Crisscross Ellipses ![graphic](img404.gif) Ea is an ellipse with an equation of the form x2 + 4y2 = 4a2. Ea' is the rotated image of Ea by θ degrees counterclockwise around the origin O(0, 0) for 0° < θ < 90°. b is the distance to the origin of the two intersection points closest to the origin and c is the distance of the two other intersection points. We call an ordered triplet (a, b, c) a canonical ellipsoidal triplet if a, b and c are positive integers. For example, (209, 247, 286) is a canonical ellipsoidal triplet. Let C(N) be the number of distinct canonical ellipsoidal triplets (a, b, c) for a ≤ N. It can be verified that C(103) = 7, C(104) = 106 and C(106) = 11845. Find C(1017).