# Problem 468: Smooth divisors of binomial coefficients An integer is called B-smooth if none of its prime factors is greater than B. Let SB(n) be the largest B-smooth divisor of n. Examples: S1(10) = 1 S4(2100) = 12 S17(2496144) = 5712 Define F(n) = ∑1≤B≤n ∑0≤r≤n SB(C(n,r)). Here, C(n,r) denotes the binomial coefficient. Examples: F(11) = 3132 F(1 111) mod 1 000 000 993 = 706036312 F(111 111) mod 1 000 000 993 = 22156169 Find F(11 111 111) mod 1 000 000 993.