# Problem 517: A real recursion For every real number \$a \\gt 1\$ is given the sequence \$g\_a\$ by: \$g\_{a}(x)=1\$ for \$x \\lt a\$ \$g\_{a}(x)=g\_{a}(x-1)+g\_a(x-a)\$ for \$x \\ge a\$ \$G(n)=g\_{\\sqrt {n}}(n)\$ \$G(90)=7564511\$. Find \$\\sum G(p)\$ for \$p\$ prime and \$10000000 \\lt p \\lt 10010000\$ Give your answer modulo 1000000007.