# Problem 537: Counting tuples ![graphic](img537.gif) Let π(x) be the prime counting function, i.e. the number of prime numbers less than or equal to x. For example, π(1)=0, π(2)=1, π(100)=25. Let T(n,k) be the number of k-tuples (x1,…,xk) which satisfy: 1. every xi is a positive integer; 2. \$\\displaystyle \\sum\_{i=1}\^k \\pi(x\_i)=n\$ For example T(3,3)=19. The 19 tuples are (1,1,5), (1,5,1), (5,1,1), (1,1,6), (1,6,1), (6,1,1), (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1), (1,2,4), (1,4,2), (2,1,4), (2,4,1), (4,1,2), (4,2,1), (2,2,2). You are given T(10,10) = 869 985 and T(103,103) ≡ 578 270 566 (mod 1 004 535 809). Find T(20 000, 20 000) mod 1 004 535 809.