#' Cross Validation #' #' The cross validation function of xgboost #' #' @param params the list of parameters. The complete list of parameters is #' available in the \href{http://xgboost.readthedocs.io/en/latest/parameter.html}{online documentation}. Below #' is a shorter summary: #' \itemize{ #' \item \code{objective} objective function, common ones are #' \itemize{ #' \item \code{reg:squarederror} Regression with squared loss. #' \item \code{binary:logistic} logistic regression for classification. #' \item See \code{\link[=xgb.train]{xgb.train}()} for complete list of objectives. #' } #' \item \code{eta} step size of each boosting step #' \item \code{max_depth} maximum depth of the tree #' \item \code{nthread} number of thread used in training, if not set, all threads are used #' } #' #' See \code{\link{xgb.train}} for further details. #' See also demo/ for walkthrough example in R. #' @param data takes an \code{xgb.DMatrix}, \code{matrix}, or \code{dgCMatrix} as the input. #' @param nrounds the max number of iterations #' @param nfold the original dataset is randomly partitioned into \code{nfold} equal size subsamples. #' @param label vector of response values. Should be provided only when data is an R-matrix. #' @param missing is only used when input is a dense matrix. By default is set to NA, which means #' that NA values should be considered as 'missing' by the algorithm. #' Sometimes, 0 or other extreme value might be used to represent missing values. #' @param prediction A logical value indicating whether to return the test fold predictions #' from each CV model. This parameter engages the \code{\link{cb.cv.predict}} callback. #' @param showsd \code{boolean}, whether to show standard deviation of cross validation #' @param metrics, list of evaluation metrics to be used in cross validation, #' when it is not specified, the evaluation metric is chosen according to objective function. #' Possible options are: #' \itemize{ #' \item \code{error} binary classification error rate #' \item \code{rmse} Rooted mean square error #' \item \code{logloss} negative log-likelihood function #' \item \code{mae} Mean absolute error #' \item \code{mape} Mean absolute percentage error #' \item \code{auc} Area under curve #' \item \code{aucpr} Area under PR curve #' \item \code{merror} Exact matching error, used to evaluate multi-class classification #' } #' @param obj customized objective function. Returns gradient and second order #' gradient with given prediction and dtrain. #' @param feval customized evaluation function. Returns #' \code{list(metric='metric-name', value='metric-value')} with given #' prediction and dtrain. #' @param stratified a \code{boolean} indicating whether sampling of folds should be stratified #' by the values of outcome labels. #' @param folds \code{list} provides a possibility to use a list of pre-defined CV folds #' (each element must be a vector of test fold's indices). When folds are supplied, #' the \code{nfold} and \code{stratified} parameters are ignored. #' @param train_folds \code{list} list specifying which indicies to use for training. If \code{NULL} #' (the default) all indices not specified in \code{folds} will be used for training. #' @param verbose \code{boolean}, print the statistics during the process #' @param print_every_n Print each n-th iteration evaluation messages when \code{verbose>0}. #' Default is 1 which means all messages are printed. This parameter is passed to the #' \code{\link{cb.print.evaluation}} callback. #' @param early_stopping_rounds If \code{NULL}, the early stopping function is not triggered. #' If set to an integer \code{k}, training with a validation set will stop if the performance #' doesn't improve for \code{k} rounds. #' Setting this parameter engages the \code{\link{cb.early.stop}} callback. #' @param maximize If \code{feval} and \code{early_stopping_rounds} are set, #' then this parameter must be set as well. #' When it is \code{TRUE}, it means the larger the evaluation score the better. #' This parameter is passed to the \code{\link{cb.early.stop}} callback. #' @param callbacks a list of callback functions to perform various task during boosting. #' See \code{\link{callbacks}}. Some of the callbacks are automatically created depending on the #' parameters' values. User can provide either existing or their own callback methods in order #' to customize the training process. #' @param ... other parameters to pass to \code{params}. #' #' @details #' The original sample is randomly partitioned into \code{nfold} equal size subsamples. #' #' Of the \code{nfold} subsamples, a single subsample is retained as the validation data for testing the model, and the remaining \code{nfold - 1} subsamples are used as training data. #' #' The cross-validation process is then repeated \code{nrounds} times, with each of the \code{nfold} subsamples used exactly once as the validation data. #' #' All observations are used for both training and validation. #' #' Adapted from \url{https://en.wikipedia.org/wiki/Cross-validation_\%28statistics\%29} #' #' @return #' An object of class \code{xgb.cv.synchronous} with the following elements: #' \itemize{ #' \item \code{call} a function call. #' \item \code{params} parameters that were passed to the xgboost library. Note that it does not #' capture parameters changed by the \code{\link{cb.reset.parameters}} callback. #' \item \code{callbacks} callback functions that were either automatically assigned or #' explicitly passed. #' \item \code{evaluation_log} evaluation history stored as a \code{data.table} with the #' first column corresponding to iteration number and the rest corresponding to the #' CV-based evaluation means and standard deviations for the training and test CV-sets. #' It is created by the \code{\link{cb.evaluation.log}} callback. #' \item \code{niter} number of boosting iterations. #' \item \code{nfeatures} number of features in training data. #' \item \code{folds} the list of CV folds' indices - either those passed through the \code{folds} #' parameter or randomly generated. #' \item \code{best_iteration} iteration number with the best evaluation metric value #' (only available with early stopping). #' \item \code{best_ntreelimit} and the \code{ntreelimit} Deprecated attributes, use \code{best_iteration} instead. #' \item \code{pred} CV prediction values available when \code{prediction} is set. #' It is either vector or matrix (see \code{\link{cb.cv.predict}}). #' \item \code{models} a list of the CV folds' models. It is only available with the explicit #' setting of the \code{cb.cv.predict(save_models = TRUE)} callback. #' } #' #' @examples #' data(agaricus.train, package='xgboost') #' dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label)) #' cv <- xgb.cv(data = dtrain, nrounds = 3, nthread = 2, nfold = 5, metrics = list("rmse","auc"), #' max_depth = 3, eta = 1, objective = "binary:logistic") #' print(cv) #' print(cv, verbose=TRUE) #' #' @export xgb.cv <- function(params=list(), data, nrounds, nfold, label = NULL, missing = NA, prediction = FALSE, showsd = TRUE, metrics=list(), obj = NULL, feval = NULL, stratified = TRUE, folds = NULL, train_folds = NULL, verbose = TRUE, print_every_n=1L, early_stopping_rounds = NULL, maximize = NULL, callbacks = list(), ...) { check.deprecation(...) params <- check.booster.params(params, ...) # TODO: should we deprecate the redundant 'metrics' parameter? for (m in metrics) params <- c(params, list("eval_metric" = m)) check.custom.obj() check.custom.eval() #if (is.null(params[['eval_metric']]) && is.null(feval)) # stop("Either 'eval_metric' or 'feval' must be provided for CV") # Check the labels if ((inherits(data, 'xgb.DMatrix') && is.null(getinfo(data, 'label'))) || (!inherits(data, 'xgb.DMatrix') && is.null(label))) { stop("Labels must be provided for CV either through xgb.DMatrix, or through 'label=' when 'data' is matrix") } else if (inherits(data, 'xgb.DMatrix')) { if (!is.null(label)) warning("xgb.cv: label will be ignored, since data is of type xgb.DMatrix") cv_label <- getinfo(data, 'label') } else { cv_label <- label } # CV folds if (!is.null(folds)) { if (!is.list(folds) || length(folds) < 2) stop("'folds' must be a list with 2 or more elements that are vectors of indices for each CV-fold") nfold <- length(folds) } else { if (nfold <= 1) stop("'nfold' must be > 1") folds <- generate.cv.folds(nfold, nrow(data), stratified, cv_label, params) } # Potential TODO: sequential CV #if (strategy == 'sequential') # stop('Sequential CV strategy is not yet implemented') # verbosity & evaluation printing callback: params <- c(params, list(silent = 1)) print_every_n <- max(as.integer(print_every_n), 1L) if (!has.callbacks(callbacks, 'cb.print.evaluation') && verbose) { callbacks <- add.cb(callbacks, cb.print.evaluation(print_every_n, showsd = showsd)) } # evaluation log callback: always is on in CV evaluation_log <- list() if (!has.callbacks(callbacks, 'cb.evaluation.log')) { callbacks <- add.cb(callbacks, cb.evaluation.log()) } # Early stopping callback stop_condition <- FALSE if (!is.null(early_stopping_rounds) && !has.callbacks(callbacks, 'cb.early.stop')) { callbacks <- add.cb(callbacks, cb.early.stop(early_stopping_rounds, maximize = maximize, verbose = verbose)) } # CV-predictions callback if (prediction && !has.callbacks(callbacks, 'cb.cv.predict')) { callbacks <- add.cb(callbacks, cb.cv.predict(save_models = FALSE)) } # Sort the callbacks into categories cb <- categorize.callbacks(callbacks) # create the booster-folds # train_folds dall <- xgb.get.DMatrix(data, label, missing) bst_folds <- lapply(seq_along(folds), function(k) { dtest <- slice(dall, folds[[k]]) # code originally contributed by @RolandASc on stackoverflow if (is.null(train_folds)) dtrain <- slice(dall, unlist(folds[-k])) else dtrain <- slice(dall, train_folds[[k]]) handle <- xgb.Booster.handle(params, list(dtrain, dtest)) list(dtrain = dtrain, bst = handle, watchlist = list(train = dtrain, test = dtest), index = folds[[k]]) }) rm(dall) # a "basket" to collect some results from callbacks basket <- list() # extract parameters that can affect the relationship b/w #trees and #iterations num_class <- max(as.numeric(NVL(params[['num_class']], 1)), 1) # nolint num_parallel_tree <- max(as.numeric(NVL(params[['num_parallel_tree']], 1)), 1) # nolint # those are fixed for CV (no training continuation) begin_iteration <- 1 end_iteration <- nrounds # synchronous CV boosting: run CV folds' models within each iteration for (iteration in begin_iteration:end_iteration) { for (f in cb$pre_iter) f() msg <- lapply(bst_folds, function(fd) { xgb.iter.update(fd$bst, fd$dtrain, iteration - 1, obj) xgb.iter.eval(fd$bst, fd$watchlist, iteration - 1, feval) }) msg <- simplify2array(msg) bst_evaluation <- rowMeans(msg) bst_evaluation_err <- sqrt(rowMeans(msg^2) - bst_evaluation^2) # nolint for (f in cb$post_iter) f() if (stop_condition) break } for (f in cb$finalize) f(finalize = TRUE) # the CV result ret <- list( call = match.call(), params = params, callbacks = callbacks, evaluation_log = evaluation_log, niter = end_iteration, nfeatures = ncol(data), folds = folds ) ret <- c(ret, basket) class(ret) <- 'xgb.cv.synchronous' invisible(ret) } #' Print xgb.cv result #' #' Prints formatted results of \code{xgb.cv}. #' #' @param x an \code{xgb.cv.synchronous} object #' @param verbose whether to print detailed data #' @param ... passed to \code{data.table.print} #' #' @details #' When not verbose, it would only print the evaluation results, #' including the best iteration (when available). #' #' @examples #' data(agaricus.train, package='xgboost') #' train <- agaricus.train #' cv <- xgb.cv(data = train$data, label = train$label, nfold = 5, max_depth = 2, #' eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic") #' print(cv) #' print(cv, verbose=TRUE) #' #' @rdname print.xgb.cv #' @method print xgb.cv.synchronous #' @export print.xgb.cv.synchronous <- function(x, verbose = FALSE, ...) { cat('##### xgb.cv ', length(x$folds), '-folds\n', sep = '') if (verbose) { if (!is.null(x$call)) { cat('call:\n ') print(x$call) } if (!is.null(x$params)) { cat('params (as set within xgb.cv):\n') cat(' ', paste(names(x$params), paste0('"', unlist(x$params), '"'), sep = ' = ', collapse = ', '), '\n', sep = '') } if (!is.null(x$callbacks) && length(x$callbacks) > 0) { cat('callbacks:\n') lapply(callback.calls(x$callbacks), function(x) { cat(' ') print(x) }) } for (n in c('niter', 'best_iteration', 'best_ntreelimit')) { if (is.null(x[[n]])) next cat(n, ': ', x[[n]], '\n', sep = '') } if (!is.null(x$pred)) { cat('pred:\n') str(x$pred) } } if (verbose) cat('evaluation_log:\n') print(x$evaluation_log, row.names = FALSE, ...) if (!is.null(x$best_iteration)) { cat('Best iteration:\n') print(x$evaluation_log[x$best_iteration], row.names = FALSE, ...) } invisible(x) }