# Simple interface for training an xgboost model that wraps \code{xgb.train}. # Its documentation is combined with xgb.train. # #' @rdname xgb.train #' @export xgboost <- function(data = NULL, label = NULL, missing = NA, weight = NULL, params = list(), nrounds, verbose = 1, print_every_n = 1L, early_stopping_rounds = NULL, maximize = NULL, save_period = NULL, save_name = "xgboost.model", xgb_model = NULL, callbacks = list(), ...) { merged <- check.booster.params(params, ...) dtrain <- xgb.get.DMatrix(data, label, missing, weight, nthread = merged$nthread) watchlist <- list(train = dtrain) bst <- xgb.train(params, dtrain, nrounds, watchlist, verbose = verbose, print_every_n = print_every_n, early_stopping_rounds = early_stopping_rounds, maximize = maximize, save_period = save_period, save_name = save_name, xgb_model = xgb_model, callbacks = callbacks, ...) return (bst) } #' Training part from Mushroom Data Set #' #' This data set is originally from the Mushroom data set, #' UCI Machine Learning Repository. #' #' This data set includes the following fields: #' #' \itemize{ #' \item \code{label} the label for each record #' \item \code{data} a sparse Matrix of \code{dgCMatrix} class, with 126 columns. #' } #' #' @references #' https://archive.ics.uci.edu/ml/datasets/Mushroom #' #' Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository #' [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, #' School of Information and Computer Science. #' #' @docType data #' @keywords datasets #' @name agaricus.train #' @usage data(agaricus.train) #' @format A list containing a label vector, and a dgCMatrix object with 6513 #' rows and 127 variables NULL #' Test part from Mushroom Data Set #' #' This data set is originally from the Mushroom data set, #' UCI Machine Learning Repository. #' #' This data set includes the following fields: #' #' \itemize{ #' \item \code{label} the label for each record #' \item \code{data} a sparse Matrix of \code{dgCMatrix} class, with 126 columns. #' } #' #' @references #' https://archive.ics.uci.edu/ml/datasets/Mushroom #' #' Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository #' [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, #' School of Information and Computer Science. #' #' @docType data #' @keywords datasets #' @name agaricus.test #' @usage data(agaricus.test) #' @format A list containing a label vector, and a dgCMatrix object with 1611 #' rows and 126 variables NULL # Various imports #' @importClassesFrom Matrix dgCMatrix dgeMatrix #' @importFrom Matrix colSums #' @importFrom Matrix sparse.model.matrix #' @importFrom Matrix sparseVector #' @importFrom Matrix sparseMatrix #' @importFrom Matrix t #' @importFrom data.table data.table #' @importFrom data.table is.data.table #' @importFrom data.table as.data.table #' @importFrom data.table := #' @importFrom data.table rbindlist #' @importFrom data.table setkey #' @importFrom data.table setkeyv #' @importFrom data.table setnames #' @importFrom jsonlite fromJSON #' @importFrom jsonlite toJSON #' @importFrom utils object.size str tail #' @importFrom stats predict #' @importFrom stats median #' @importFrom utils head #' @importFrom graphics barplot #' @importFrom graphics lines #' @importFrom graphics points #' @importFrom graphics grid #' @importFrom graphics par #' @importFrom graphics title #' @importFrom grDevices rgb #' #' @import methods #' @useDynLib xgboost, .registration = TRUE NULL