% Generated by roxygen2: do not edit by hand % Please edit documentation in R/xgb.DMatrix.R \name{xgb.DMatrix} \alias{xgb.DMatrix} \title{Construct xgb.DMatrix object} \usage{ xgb.DMatrix( data, info = list(), missing = NA, silent = FALSE, nthread = NULL, ... ) } \arguments{ \item{data}{a \code{matrix} object (either numeric or integer), a \code{dgCMatrix} object, a \code{dgRMatrix} object (only when making predictions from a fitted model), a \code{dsparseVector} object (only when making predictions from a fitted model, will be interpreted as a row vector), or a character string representing a filename.} \item{info}{a named list of additional information to store in the \code{xgb.DMatrix} object. See \code{\link{setinfo}} for the specific allowed kinds of} \item{missing}{a float value to represents missing values in data (used only when input is a dense matrix). It is useful when a 0 or some other extreme value represents missing values in data.} \item{silent}{whether to suppress printing an informational message after loading from a file.} \item{nthread}{Number of threads used for creating DMatrix.} \item{...}{the \code{info} data could be passed directly as parameters, without creating an \code{info} list.} } \description{ Construct xgb.DMatrix object from either a dense matrix, a sparse matrix, or a local file. Supported input file formats are either a LIBSVM text file or a binary file that was created previously by \code{\link{xgb.DMatrix.save}}). } \examples{ data(agaricus.train, package='xgboost') dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label)) xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data') dtrain <- xgb.DMatrix('xgb.DMatrix.data') if (file.exists('xgb.DMatrix.data')) file.remove('xgb.DMatrix.data') }