% Generated by roxygen2: do not edit by hand % Please edit documentation in R/xgb.load.R \name{xgb.load} \alias{xgb.load} \title{Load xgboost model from binary file} \usage{ xgb.load(modelfile) } \arguments{ \item{modelfile}{the name of the binary input file.} } \value{ An object of \code{xgb.Booster} class. } \description{ Load xgboost model from the binary model file. } \details{ The input file is expected to contain a model saved in an xgboost model format using either \code{\link{xgb.save}} or \code{\link{cb.save.model}} in R, or using some appropriate methods from other xgboost interfaces. E.g., a model trained in Python and saved from there in xgboost format, could be loaded from R. Note: a model saved as an R-object, has to be loaded using corresponding R-methods, not \code{xgb.load}. } \examples{ data(agaricus.train, package='xgboost') data(agaricus.test, package='xgboost') train <- agaricus.train test <- agaricus.test bst <- xgboost(data = train$data, label = train$label, max_depth = 2, eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic") xgb.save(bst, 'xgb.model') bst <- xgb.load('xgb.model') if (file.exists('xgb.model')) file.remove('xgb.model') pred <- predict(bst, test$data) } \seealso{ \code{\link{xgb.save}}, \code{\link{xgb.Booster.complete}}. }