% Generated by roxygen2: do not edit by hand % Please edit documentation in R/xgb.save.R \name{xgb.save} \alias{xgb.save} \title{Save xgboost model to binary file} \usage{ xgb.save(model, fname) } \arguments{ \item{model}{model object of \code{xgb.Booster} class.} \item{fname}{name of the file to write.} } \description{ Save xgboost model to a file in binary format. } \details{ This methods allows to save a model in an xgboost-internal binary format which is universal among the various xgboost interfaces. In R, the saved model file could be read-in later using either the \code{\link{xgb.load}} function or the \code{xgb_model} parameter of \code{\link{xgb.train}}. Note: a model can also be saved as an R-object (e.g., by using \code{\link[base]{readRDS}} or \code{\link[base]{save}}). However, it would then only be compatible with R, and corresponding R-methods would need to be used to load it. Moreover, persisting the model with \code{\link[base]{readRDS}} or \code{\link[base]{save}}) will cause compatibility problems in future versions of XGBoost. Consult \code{\link{a-compatibility-note-for-saveRDS-save}} to learn how to persist models in a future-proof way, i.e. to make the model accessible in future releases of XGBoost. } \examples{ data(agaricus.train, package='xgboost') data(agaricus.test, package='xgboost') train <- agaricus.train test <- agaricus.test bst <- xgboost(data = train$data, label = train$label, max_depth = 2, eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic") xgb.save(bst, 'xgb.model') bst <- xgb.load('xgb.model') if (file.exists('xgb.model')) file.remove('xgb.model') pred <- predict(bst, test$data) } \seealso{ \code{\link{xgb.load}}, \code{\link{xgb.Booster.complete}}. }