context('Test generalized linear models') require(xgboost) test_that("gblinear works", { data(agaricus.train, package = 'xgboost') data(agaricus.test, package = 'xgboost') dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label) dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label) param <- list(objective = "binary:logistic", eval_metric = "error", booster = "gblinear", nthread = 2, eta = 0.8, alpha = 0.0001, lambda = 0.0001) watchlist <- list(eval = dtest, train = dtrain) n <- 5 # iterations ERR_UL <- 0.005 # upper limit for the test set error VERB <- 0 # chatterbox switch param$updater <- 'shotgun' bst <- xgb.train(param, dtrain, n, watchlist, verbose = VERB, feature_selector = 'shuffle') ypred <- predict(bst, dtest) expect_equal(length(getinfo(dtest, 'label')), 1611) expect_lt(bst$evaluation_log$eval_error[n], ERR_UL) bst <- xgb.train(param, dtrain, n, watchlist, verbose = VERB, feature_selector = 'cyclic', callbacks = list(cb.gblinear.history())) expect_lt(bst$evaluation_log$eval_error[n], ERR_UL) h <- xgb.gblinear.history(bst) expect_equal(dim(h), c(n, ncol(dtrain) + 1)) expect_is(h, "matrix") param$updater <- 'coord_descent' bst <- xgb.train(param, dtrain, n, watchlist, verbose = VERB, feature_selector = 'cyclic') expect_lt(bst$evaluation_log$eval_error[n], ERR_UL) bst <- xgb.train(param, dtrain, n, watchlist, verbose = VERB, feature_selector = 'shuffle') expect_lt(bst$evaluation_log$eval_error[n], ERR_UL) bst <- xgb.train(param, dtrain, 2, watchlist, verbose = VERB, feature_selector = 'greedy') expect_lt(bst$evaluation_log$eval_error[2], ERR_UL) bst <- xgb.train(param, dtrain, n, watchlist, verbose = VERB, feature_selector = 'thrifty', top_k = 50, callbacks = list(cb.gblinear.history(sparse = TRUE))) expect_lt(bst$evaluation_log$eval_error[n], ERR_UL) h <- xgb.gblinear.history(bst) expect_equal(dim(h), c(n, ncol(dtrain) + 1)) expect_s4_class(h, "dgCMatrix") }) test_that("gblinear early stopping works", { data(agaricus.train, package = 'xgboost') data(agaricus.test, package = 'xgboost') dtrain <- xgb.DMatrix(agaricus.train$data, label = agaricus.train$label) dtest <- xgb.DMatrix(agaricus.test$data, label = agaricus.test$label) param <- list( objective = "binary:logistic", eval_metric = "error", booster = "gblinear", nthread = 2, eta = 0.8, alpha = 0.0001, lambda = 0.0001, updater = "coord_descent" ) es_round <- 1 n <- 10 booster <- xgb.train( param, dtrain, n, list(eval = dtest, train = dtrain), early_stopping_rounds = es_round ) expect_equal(booster$best_iteration, 5) predt_es <- predict(booster, dtrain) n <- booster$best_iteration + es_round booster <- xgb.train( param, dtrain, n, list(eval = dtest, train = dtrain), early_stopping_rounds = es_round ) predt <- predict(booster, dtrain) expect_equal(predt_es, predt) })