context('Test prediction of feature interactions') require(xgboost) set.seed(123) test_that("predict feature interactions works", { # simulate some binary data and a linear outcome with an interaction term N <- 1000 P <- 5 X <- matrix(rbinom(N * P, 1, 0.5), ncol = P, dimnames = list(NULL, letters[1:P])) # center the data (as contributions are computed WRT feature means) X <- scale(X, scale = FALSE) # outcome without any interactions, without any noise: f <- function(x) 2 * x[, 1] - 3 * x[, 2] # outcome with interactions, without noise: f_int <- function(x) f(x) + 2 * x[, 2] * x[, 3] # outcome with interactions, with noise: #f_int_noise <- function(x) f_int(x) + rnorm(N, 0, 0.3) y <- f_int(X) dm <- xgb.DMatrix(X, label = y) param <- list(eta = 0.1, max_depth = 4, base_score = mean(y), lambda = 0, nthread = 2) b <- xgb.train(param, dm, 100) pred <- predict(b, dm, outputmargin = TRUE) # SHAP contributions: cont <- predict(b, dm, predcontrib = TRUE) expect_equal(dim(cont), c(N, P + 1)) # make sure for each row they add up to marginal predictions expect_lt(max(abs(rowSums(cont) - pred)), 0.001) # Hand-construct the 'ground truth' feature contributions: gt_cont <- cbind( 2. * X[, 1], -3. * X[, 2] + 1. * X[, 2] * X[, 3], # attribute a HALF of the interaction term to feature #2 1. * X[, 2] * X[, 3] # and another HALF of the interaction term to feature #3 ) gt_cont <- cbind(gt_cont, matrix(0, nrow = N, ncol = P + 1 - 3)) # These should be relatively close: expect_lt(max(abs(cont - gt_cont)), 0.05) # SHAP interaction contributions: intr <- predict(b, dm, predinteraction = TRUE) expect_equal(dim(intr), c(N, P + 1, P + 1)) # check assigned colnames cn <- c(letters[1:P], "BIAS") expect_equal(dimnames(intr), list(NULL, cn, cn)) # check the symmetry expect_lt(max(abs(aperm(intr, c(1, 3, 2)) - intr)), 0.00001) # sums WRT columns must be close to feature contributions expect_lt(max(abs(apply(intr, c(1, 2), sum) - cont)), 0.00001) # diagonal terms for features 3,4,5 must be close to zero expect_lt(Reduce(max, sapply(3:P, function(i) max(abs(intr[, i, i])))), 0.05) # BIAS must have no interactions expect_lt(max(abs(intr[, 1:P, P + 1])), 0.00001) # interactions other than 2 x 3 must be close to zero intr23 <- intr intr23[, 2, 3] <- 0 expect_lt( Reduce(max, sapply(1:P, function(i) max(abs(intr23[, i, (i + 1):(P + 1)])))), 0.05 ) # Construct the 'ground truth' contributions of interactions directly from the linear terms: gt_intr <- array(0, c(N, P + 1, P + 1)) gt_intr[, 2, 3] <- 1. * X[, 2] * X[, 3] # attribute a HALF of the interaction term to each symmetric element gt_intr[, 3, 2] <- gt_intr[, 2, 3] # merge-in the diagonal based on 'ground truth' feature contributions intr_diag <- gt_cont - apply(gt_intr, c(1, 2), sum) for (j in seq_len(P)) { gt_intr[, j, j] <- intr_diag[, j] } # These should be relatively close: expect_lt(max(abs(intr - gt_intr)), 0.1) }) test_that("SHAP contribution values are not NAN", { d <- data.frame( x1 = c(-2.3, 1.4, 5.9, 2, 2.5, 0.3, -3.6, -0.2, 0.5, -2.8, -4.6, 3.3, -1.2, -1.1, -2.3, 0.4, -1.5, -0.2, -1, 3.7), x2 = c(291.179171, 269.198331, 289.942097, 283.191669, 269.673332, 294.158346, 287.255835, 291.530838, 285.899586, 269.290833, 268.649586, 291.530841, 280.074593, 269.484168, 293.94042, 294.327506, 296.20709, 295.441669, 283.16792, 270.227085), y = c(9, 15, 5.7, 9.2, 22.4, 5, 9, 3.2, 7.2, 13.1, 7.8, 16.9, 6.5, 22.1, 5.3, 10.4, 11.1, 13.9, 11, 20.5), fold = c(2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)) ivs <- c("x1", "x2") fit <- xgboost( verbose = 0, params = list( objective = "reg:squarederror", eval_metric = "rmse"), data = as.matrix(subset(d, fold == 2)[, ivs]), label = subset(d, fold == 2)$y, nthread = 1, nrounds = 3) shaps <- as.data.frame(predict(fit, newdata = as.matrix(subset(d, fold == 1)[, ivs]), predcontrib = TRUE)) result <- cbind(shaps, sum = rowSums(shaps), pred = predict(fit, newdata = as.matrix(subset(d, fold == 1)[, ivs]))) expect_true(identical(TRUE, all.equal(result$sum, result$pred, tol = 1e-6))) }) test_that("multiclass feature interactions work", { dm <- xgb.DMatrix(as.matrix(iris[, -5]), label = as.numeric(iris$Species) - 1) param <- list(eta = 0.1, max_depth = 4, objective = 'multi:softprob', num_class = 3) b <- xgb.train(param, dm, 40) pred <- t( array( data = predict(b, dm, outputmargin = TRUE), dim = c(3, 150) ) ) # SHAP contributions: cont <- predict(b, dm, predcontrib = TRUE) expect_length(cont, 3) # rewrap them as a 3d array cont <- array( data = unlist(cont), dim = c(150, 5, 3) ) # make sure for each row they add up to marginal predictions expect_lt(max(abs(apply(cont, c(1, 3), sum) - pred)), 0.001) # SHAP interaction contributions: intr <- predict(b, dm, predinteraction = TRUE) expect_length(intr, 3) # rewrap them as a 4d array intr <- aperm( a = array( data = unlist(intr), dim = c(150, 5, 5, 3) ), perm = c(4, 1, 2, 3) # [grp, row, col, col] ) # check the symmetry expect_lt(max(abs(aperm(intr, c(1, 2, 4, 3)) - intr)), 0.00001) # sums WRT columns must be close to feature contributions expect_lt(max(abs(apply(intr, c(1, 2, 3), sum) - aperm(cont, c(3, 1, 2)))), 0.00001) }) test_that("SHAP single sample works", { train <- agaricus.train test <- agaricus.test booster <- xgboost( data = train$data, label = train$label, max_depth = 2, nrounds = 4, objective = "binary:logistic", ) predt <- predict( booster, newdata = train$data[1, , drop = FALSE], predcontrib = TRUE ) expect_equal(dim(predt), c(1, dim(train$data)[2] + 1)) predt <- predict( booster, newdata = train$data[1, , drop = FALSE], predinteraction = TRUE ) expect_equal(dim(predt), c(1, dim(train$data)[2] + 1, dim(train$data)[2] + 1)) })