eXtreme Gradient Boosting =========== [![Build Status](https://xgboost-ci.net/job/xgboost/job/master/badge/icon)](https://xgboost-ci.net/blue/organizations/jenkins/xgboost/activity) [![Build Status](https://img.shields.io/travis/dmlc/xgboost.svg?label=build&logo=travis&branch=master)](https://travis-ci.org/dmlc/xgboost) [![XGBoost-CI](https://github.com/dmlc/xgboost/workflows/XGBoost-CI/badge.svg?branch=master)](https://github.com/dmlc/xgboost/actions) [![Documentation Status](https://readthedocs.org/projects/xgboost/badge/?version=latest)](https://xgboost.readthedocs.org) [![GitHub license](http://dmlc.github.io/img/apache2.svg)](./LICENSE) [![CRAN Status Badge](http://www.r-pkg.org/badges/version/xgboost)](http://cran.r-project.org/web/packages/xgboost) [![PyPI version](https://badge.fury.io/py/xgboost.svg)](https://pypi.python.org/pypi/xgboost/) [![Conda version](https://img.shields.io/conda/vn/conda-forge/py-xgboost.svg)](https://anaconda.org/conda-forge/py-xgboost) [![Optuna](https://img.shields.io/badge/Optuna-integrated-blue)](https://optuna.org) [![Twitter](https://img.shields.io/badge/@XGBoostProject--_.svg?style=social&logo=twitter)](https://twitter.com/XGBoostProject) [Community](https://xgboost.ai/community) | [Documentation](https://xgboost.readthedocs.org) | [Resources](demo/README.md) | [Contributors](CONTRIBUTORS.md) | [Release Notes](NEWS.md) XGBoost is an optimized distributed gradient boosting library designed to be highly ***efficient***, ***flexible*** and ***portable***. It implements machine learning algorithms under the [Gradient Boosting](https://en.wikipedia.org/wiki/Gradient_boosting) framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Kubernetes, Hadoop, SGE, MPI, Dask) and can solve problems beyond billions of examples. License ------- © Contributors, 2021. Licensed under an [Apache-2](https://github.com/dmlc/xgboost/blob/master/LICENSE) license. Contribute to XGBoost --------------------- XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone. Checkout the [Community Page](https://xgboost.ai/community). Reference --------- - Tianqi Chen and Carlos Guestrin. [XGBoost: A Scalable Tree Boosting System](http://arxiv.org/abs/1603.02754). In 22nd SIGKDD Conference on Knowledge Discovery and Data Mining, 2016 - XGBoost originates from research project at University of Washington. Sponsors -------- Become a sponsor and get a logo here. See details at [Sponsoring the XGBoost Project](https://xgboost.ai/sponsors). The funds are used to defray the cost of continuous integration and testing infrastructure (https://xgboost-ci.net). ## Open Source Collective sponsors [![Backers on Open Collective](https://opencollective.com/xgboost/backers/badge.svg)](#backers) [![Sponsors on Open Collective](https://opencollective.com/xgboost/sponsors/badge.svg)](#sponsors) ### Sponsors [[Become a sponsor](https://opencollective.com/xgboost#sponsor)] NVIDIA ### Backers [[Become a backer](https://opencollective.com/xgboost#backer)] ## Other sponsors The sponsors in this list are donating cloud hours in lieu of cash donation. Amazon Web Services