{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# XGBoost Model Analysis\n", "\n", "This notebook can be used to load and analysis model learnt from all xgboost bindings, including distributed training. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import sys\n", "import os\n", "%matplotlib inline " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Please change the ```pkg_path``` and ```model_file``` to be correct path" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "pkg_path = '../../python-package/'\n", "model_file = 's3://my-bucket/xgb-demo/model/0002.model'\n", "sys.path.insert(0, pkg_path)\n", "import xgboost as xgb" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Plot the Feature Importance" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# plot the first two trees.\n", "bst = xgb.Booster(model_file=model_file)\n", "xgb.plot_importance(bst)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Plot the First Tree" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "tree_id = 0\n", "xgb.to_graphviz(bst, tree_id)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.3" } }, "nbformat": 4, "nbformat_minor": 0 }