#!/bin/bash # map the data to features. For convenience we only use 7 original attributes and encode them as features in a trivial way python mapfeat.py # split train and test python mknfold.py machine.txt 1 # training and output the models ../../xgboost machine.conf # output predictions of test data ../../xgboost machine.conf task=pred model_in=0002.model # print the boosters of 0002.model in dump.raw.txt ../../xgboost machine.conf task=dump model_in=0002.model name_dump=dump.raw.txt # print the boosters of 0002.model in dump.nice.txt with feature map ../../xgboost machine.conf task=dump model_in=0002.model fmap=featmap.txt name_dump=dump.nice.txt # cat the result cat dump.nice.txt