""" Example of training with Dask on CPU ==================================== """ import xgboost as xgb from xgboost.dask import DaskDMatrix from dask.distributed import Client from dask.distributed import LocalCluster from dask import array as da def main(client): # generate some random data for demonstration m = 100000 n = 100 X = da.random.random(size=(m, n), chunks=100) y = da.random.random(size=(m, ), chunks=100) # DaskDMatrix acts like normal DMatrix, works as a proxy for local # DMatrix scatter around workers. dtrain = DaskDMatrix(client, X, y) # Use train method from xgboost.dask instead of xgboost. This # distributed version of train returns a dictionary containing the # resulting booster and evaluation history obtained from # evaluation metrics. output = xgb.dask.train(client, {'verbosity': 1, 'tree_method': 'hist'}, dtrain, num_boost_round=4, evals=[(dtrain, 'train')]) bst = output['booster'] history = output['history'] # you can pass output directly into `predict` too. prediction = xgb.dask.predict(client, bst, dtrain) print('Evaluation history:', history) return prediction if __name__ == '__main__': # or use other clusters for scaling with LocalCluster(n_workers=7, threads_per_worker=4) as cluster: with Client(cluster) as client: main(client)