#!/usr/bin/python # this is the example script to use xgboost to train import numpy as np import xgboost as xgb from sklearn.ensemble import GradientBoostingClassifier import time test_size = 550000 # path to where the data lies dpath = 'data' # load in training data, directly use numpy dtrain = np.loadtxt( dpath+'/training.csv', delimiter=',', skiprows=1, converters={32: lambda x:int(x=='s') } ) print ('finish loading from csv ') label = dtrain[:,32] data = dtrain[:,1:31] # rescale weight to make it same as test set weight = dtrain[:,31] * float(test_size) / len(label) sum_wpos = sum( weight[i] for i in range(len(label)) if label[i] == 1.0 ) sum_wneg = sum( weight[i] for i in range(len(label)) if label[i] == 0.0 ) # print weight statistics print ('weight statistics: wpos=%g, wneg=%g, ratio=%g' % ( sum_wpos, sum_wneg, sum_wneg/sum_wpos )) # construct xgboost.DMatrix from numpy array, treat -999.0 as missing value xgmat = xgb.DMatrix( data, label=label, missing = -999.0, weight=weight ) # setup parameters for xgboost param = {} # use logistic regression loss param['objective'] = 'binary:logitraw' # scale weight of positive examples param['scale_pos_weight'] = sum_wneg/sum_wpos param['bst:eta'] = 0.1 param['bst:max_depth'] = 6 param['eval_metric'] = 'auc' param['nthread'] = 4 plst = param.items()+[('eval_metric', 'ams@0.15')] watchlist = [ (xgmat,'train') ] # boost 10 trees num_round = 10 print ('loading data end, start to boost trees') print ("training GBM from sklearn") tmp = time.time() gbm = GradientBoostingClassifier(n_estimators=num_round, max_depth=6, verbose=2) gbm.fit(data, label) print ("sklearn.GBM costs: %s seconds" % str(time.time() - tmp)) #raw_input() print ("training xgboost") threads = [1, 2, 4, 16] for i in threads: param['nthread'] = i tmp = time.time() plst = param.items()+[('eval_metric', 'ams@0.15')] bst = xgb.train( plst, xgmat, num_round, watchlist ); print ("XGBoost with %d thread costs: %s seconds" % (i, str(time.time() - tmp))) print ('finish training')