import xgboost as xgb import rmm from sklearn.datasets import make_classification # Initialize RMM pool allocator rmm.reinitialize(pool_allocator=True) # Optionally force XGBoost to use RMM for all GPU memory allocation, see ./README.md # xgb.set_config(use_rmm=True) X, y = make_classification(n_samples=10000, n_informative=5, n_classes=3) dtrain = xgb.DMatrix(X, label=y) params = { "max_depth": 8, "eta": 0.01, "objective": "multi:softprob", "num_class": 3, "tree_method": "gpu_hist", } # XGBoost will automatically use the RMM pool allocator bst = xgb.train(params, dtrain, num_boost_round=100, evals=[(dtrain, "train")])