################## Installation Guide ################## XGBoost provides binary packages for some language bindings. The binary packages support the GPU algorithm (``gpu_hist``) on machines with NVIDIA GPUs. Please note that **training with multiple GPUs is only supported for Linux platform**. See :doc:`gpu/index`. Also we have both stable releases and nightly builds, see below for how to install them. For building from source, visit :doc:`this page `. .. contents:: Contents Stable Release ============== Python ------ Pre-built binary are uploaded to PyPI (Python Package Index) for each release. Supported platforms are Linux (x86_64, aarch64), Windows (x86_64) and MacOS (x86_64, Apple Silicon). .. code-block:: bash pip install xgboost You might need to run the command with ``--user`` flag or use ``virtualenv`` if you run into permission errors. Python pre-built binary capability for each platform: .. |tick| unicode:: U+2714 .. |cross| unicode:: U+2718 +---------------------+---------+----------------------+ | Platform | GPU | Multi-Node-Multi-GPU | +=====================+=========+======================+ | Linux x86_64 | |tick| | |tick| | +---------------------+---------+----------------------+ | Linux aarch64 | |cross| | |cross| | +---------------------+---------+----------------------+ | MacOS x86_64 | |cross| | |cross| | +---------------------+---------+----------------------+ | MacOS Apple Silicon | |cross| | |cross| | +---------------------+---------+----------------------+ | Windows | |tick| | |cross| | +---------------------+---------+----------------------+ Conda ***** You may use the Conda packaging manager to install XGBoost: .. code-block:: bash conda install -c conda-forge py-xgboost Conda should be able to detect the existence of a GPU on your machine and install the correct variant of XGBoost. If you run into issues, try indicating the variant explicitly: .. code-block:: bash # CPU only conda install -c conda-forge py-xgboost-cpu # Use NVIDIA GPU conda install -c conda-forge py-xgboost-gpu Visit the `Miniconda website `_ to obtain Conda. R - * From CRAN: .. code-block:: R install.packages("xgboost") .. note:: Using all CPU cores (threads) on Mac OSX If you are using Mac OSX, you should first install OpenMP library (``libomp``) by running .. code-block:: bash brew install libomp and then run ``install.packages("xgboost")``. Without OpenMP, XGBoost will only use a single CPU core, leading to suboptimal training speed. * We also provide **experimental** pre-built binary with GPU support. With this binary, you will be able to use the GPU algorithm without building XGBoost from the source. Download the binary package from the Releases page. The file name will be of the form ``xgboost_r_gpu_[os]_[version].tar.gz``, where ``[os]`` is either ``linux`` or ``win64``. (We build the binaries for 64-bit Linux and Windows.) Then install XGBoost by running: .. code-block:: bash # Install dependencies R -q -e "install.packages(c('data.table', 'jsonlite'))" # Install XGBoost R CMD INSTALL ./xgboost_r_gpu_linux.tar.gz JVM --- * XGBoost4j/XGBoost4j-Spark .. code-block:: xml :caption: Maven ... 2.12 ... ml.dmlc xgboost4j_${scala.binary.version} latest_version_num ml.dmlc xgboost4j-spark_${scala.binary.version} latest_version_num .. code-block:: scala :caption: sbt libraryDependencies ++= Seq( "ml.dmlc" %% "xgboost4j" % "latest_version_num", "ml.dmlc" %% "xgboost4j-spark" % "latest_version_num" ) * XGBoost4j-GPU/XGBoost4j-Spark-GPU .. code-block:: xml :caption: Maven ... 2.12 ... ml.dmlc xgboost4j-gpu_${scala.binary.version} latest_version_num ml.dmlc xgboost4j-spark-gpu_${scala.binary.version} latest_version_num .. code-block:: scala :caption: sbt libraryDependencies ++= Seq( "ml.dmlc" %% "xgboost4j-gpu" % "latest_version_num", "ml.dmlc" %% "xgboost4j-spark-gpu" % "latest_version_num" ) This will check out the latest stable version from the Maven Central. For the latest release version number, please check `release page `_. To enable the GPU algorithm (``tree_method='gpu_hist'``), use artifacts ``xgboost4j-gpu_2.12`` and ``xgboost4j-spark-gpu_2.12`` instead (note the ``gpu`` suffix). .. note:: Windows not supported in the JVM package Currently, XGBoost4J-Spark does not support Windows platform, as the distributed training algorithm is inoperational for Windows. Please use Linux or MacOS. Nightly Build ============= Python ------ Nightly builds are available. You can go to `this page `_, find the wheel with the commit ID you want and install it with pip: .. code-block:: bash pip install The capability of Python pre-built wheel is the same as stable release. R - Other than standard CRAN installation, we also provide *experimental* pre-built binary on with GPU support. You can go to `this page `_, Find the commit ID you want to install and then locate the file ``xgboost_r_gpu_[os]_[commit].tar.gz``, where ``[os]`` is either ``linux`` or ``win64``. (We build the binaries for 64-bit Linux and Windows.) Download it and run the following commands: .. code-block:: bash # Install dependencies R -q -e "install.packages(c('data.table', 'jsonlite', 'remotes'))" # Install XGBoost R CMD INSTALL ./xgboost_r_gpu_linux.tar.gz JVM --- * XGBoost4j/XGBoost4j-Spark .. code-block:: xml :caption: Maven XGBoost4J Snapshot Repo XGBoost4J Snapshot Repo https://s3-us-west-2.amazonaws.com/xgboost-maven-repo/snapshot/ .. code-block:: scala :caption: sbt resolvers += "XGBoost4J Snapshot Repo" at "https://s3-us-west-2.amazonaws.com/xgboost-maven-repo/snapshot/" Then add XGBoost4J as a dependency: .. code-block:: xml :caption: maven ... 2.12 ... ml.dmlc xgboost4j_${scala.binary.version} latest_version_num-SNAPSHOT ml.dmlc xgboost4j-spark_${scala.binary.version} latest_version_num-SNAPSHOT .. code-block:: scala :caption: sbt libraryDependencies ++= Seq( "ml.dmlc" %% "xgboost4j" % "latest_version_num-SNAPSHOT", "ml.dmlc" %% "xgboost4j-spark" % "latest_version_num-SNAPSHOT" ) * XGBoost4j-GPU/XGBoost4j-Spark-GPU .. code-block:: xml :caption: maven ... 2.12 ... ml.dmlc xgboost4j-gpu_${scala.binary.version} latest_version_num-SNAPSHOT ml.dmlc xgboost4j-spark-gpu_${scala.binary.version} latest_version_num-SNAPSHOT .. code-block:: scala :caption: sbt libraryDependencies ++= Seq( "ml.dmlc" %% "xgboost4j-gpu" % "latest_version_num-SNAPSHOT", "ml.dmlc" %% "xgboost4j-spark-gpu" % "latest_version_num-SNAPSHOT" ) Look up the ``version`` field in `pom.xml `_ to get the correct version number. The SNAPSHOT JARs are hosted by the XGBoost project. Every commit in the ``master`` branch will automatically trigger generation of a new SNAPSHOT JAR. You can control how often Maven should upgrade your SNAPSHOT installation by specifying ``updatePolicy``. See `here `_ for details. You can browse the file listing of the Maven repository at https://s3-us-west-2.amazonaws.com/xgboost-maven-repo/list.html. To enable the GPU algorithm (``tree_method='gpu_hist'``), use artifacts ``xgboost4j-gpu_2.12`` and ``xgboost4j-spark-gpu_2.12`` instead (note the ``gpu`` suffix).