############################## Getting Started with XGBoost4J ############################## This tutorial introduces Java API for XGBoost. ************** Data Interface ************** Like the XGBoost python module, XGBoost4J uses DMatrix to handle data. LIBSVM txt format file, sparse matrix in CSR/CSC format, and dense matrix are supported. * The first step is to import DMatrix: .. code-block:: java import ml.dmlc.xgboost4j.java.DMatrix; * Use DMatrix constructor to load data from a libsvm text format file: .. code-block:: java DMatrix dmat = new DMatrix("train.svm.txt"); * Pass arrays to DMatrix constructor to load from sparse matrix. Suppose we have a sparse matrix .. code-block:: none 1 0 2 0 4 0 0 3 3 1 2 0 We can express the sparse matrix in `Compressed Sparse Row (CSR) `_ format: .. code-block:: java long[] rowHeaders = new long[] {0,2,4,7}; float[] data = new float[] {1f,2f,4f,3f,3f,1f,2f}; int[] colIndex = new int[] {0,2,0,3,0,1,2}; int numColumn = 4; DMatrix dmat = new DMatrix(rowHeaders, colIndex, data, DMatrix.SparseType.CSR, numColumn); ... or in `Compressed Sparse Column (CSC) `_ format: .. code-block:: java long[] colHeaders = new long[] {0,3,4,6,7}; float[] data = new float[] {1f,4f,3f,1f,2f,2f,3f}; int[] rowIndex = new int[] {0,1,2,2,0,2,1}; int numRow = 3; DMatrix dmat = new DMatrix(colHeaders, rowIndex, data, DMatrix.SparseType.CSC, numRow); * You may also load your data from a dense matrix. Let's assume we have a matrix of form .. code-block:: none 1 2 3 4 5 6 Using `row-major layout `_, we specify the dense matrix as follows: .. code-block:: java float[] data = new float[] {1f,2f,3f,4f,5f,6f}; int nrow = 3; int ncol = 2; float missing = 0.0f; DMatrix dmat = new DMatrix(data, nrow, ncol, missing); * To set weight: .. code-block:: java float[] weights = new float[] {1f,2f,1f}; dmat.setWeight(weights); ****************** Setting Parameters ****************** To set parameters, parameters are specified as a Map: .. code-block:: java Map params = new HashMap() { { put("eta", 1.0); put("max_depth", 2); put("objective", "binary:logistic"); put("eval_metric", "logloss"); } }; ************** Training Model ************** With parameters and data, you are able to train a booster model. * Import Booster and XGBoost: .. code-block:: java import ml.dmlc.xgboost4j.java.Booster; import ml.dmlc.xgboost4j.java.XGBoost; * Training .. code-block:: java DMatrix trainMat = new DMatrix("train.svm.txt"); DMatrix validMat = new DMatrix("valid.svm.txt"); // Specify a watch list to see model accuracy on data sets Map watches = new HashMap() { { put("train", trainMat); put("test", testMat); } }; int nround = 2; Booster booster = XGBoost.train(trainMat, params, nround, watches, null, null); * Saving model After training, you can save model and dump it out. .. code-block:: java booster.saveModel("model.bin"); * Generaing model dump with feature map .. code-block:: java // dump without feature map String[] model_dump = booster.getModelDump(null, false); // dump with feature map String[] model_dump_with_feature_map = booster.getModelDump("featureMap.txt", false); * Load a model .. code-block:: java Booster booster = XGBoost.loadModel("model.bin"); ********** Prediction ********** After training and loading a model, you can use it to make prediction for other data. The result will be a two-dimension float array ``(nsample, nclass)``; for ``predictLeaf()``, the result would be of shape ``(nsample, nclass*ntrees)``. .. code-block:: java DMatrix dtest = new DMatrix("test.svm.txt"); // predict float[][] predicts = booster.predict(dtest); // predict leaf float[][] leafPredicts = booster.predictLeaf(dtest, 0);