"""Run benchmark on the tree booster.""" import argparse import ast import time import numpy as np import xgboost as xgb RNG = np.random.RandomState(1994) def run_benchmark(args): """Runs the benchmark.""" try: dtest = xgb.DMatrix('dtest.dm') dtrain = xgb.DMatrix('dtrain.dm') if not (dtest.num_col() == args.columns and dtrain.num_col() == args.columns): raise ValueError("Wrong cols") if not (dtest.num_row() == args.rows * args.test_size and dtrain.num_row() == args.rows * (1 - args.test_size)): raise ValueError("Wrong rows") except: print("Generating dataset: {} rows * {} columns".format(args.rows, args.columns)) print("{}/{} test/train split".format(args.test_size, 1.0 - args.test_size)) tmp = time.time() X = RNG.rand(args.rows, args.columns) y = RNG.randint(0, 2, args.rows) if 0.0 < args.sparsity < 1.0: X = np.array([[np.nan if RNG.uniform(0, 1) < args.sparsity else x for x in x_row] for x_row in X]) train_rows = int(args.rows * (1.0 - args.test_size)) test_rows = int(args.rows * args.test_size) X_train = X[:train_rows, :] X_test = X[-test_rows:, :] y_train = y[:train_rows] y_test = y[-test_rows:] print("Generate Time: %s seconds" % (str(time.time() - tmp))) del X, y tmp = time.time() print("DMatrix Start") dtrain = xgb.DMatrix(X_train, y_train, nthread=-1) dtest = xgb.DMatrix(X_test, y_test, nthread=-1) print("DMatrix Time: %s seconds" % (str(time.time() - tmp))) del X_train, y_train, X_test, y_test dtest.save_binary('dtest.dm') dtrain.save_binary('dtrain.dm') param = {'objective': 'binary:logistic'} if args.params != '': param.update(ast.literal_eval(args.params)) param['tree_method'] = args.tree_method print("Training with '%s'" % param['tree_method']) tmp = time.time() xgb.train(param, dtrain, args.iterations, evals=[(dtest, "test")]) print("Train Time: %s seconds" % (str(time.time() - tmp))) def main(): """The main function. Defines and parses command line arguments and calls the benchmark. """ parser = argparse.ArgumentParser() parser.add_argument('--tree_method', default='gpu_hist') parser.add_argument('--sparsity', type=float, default=0.0) parser.add_argument('--rows', type=int, default=1000000) parser.add_argument('--columns', type=int, default=50) parser.add_argument('--iterations', type=int, default=500) parser.add_argument('--test_size', type=float, default=0.25) parser.add_argument('--params', default='', help='Provide additional parameters as a Python dict string, e.g. --params ' '\"{\'max_depth\':2}\"') args = parser.parse_args() run_benchmark(args) if __name__ == '__main__': main()