ARG CUDA_VERSION_ARG FROM nvidia/cuda:$CUDA_VERSION_ARG-devel-ubuntu18.04 ARG CUDA_VERSION_ARG # Environment ENV DEBIAN_FRONTEND noninteractive SHELL ["/bin/bash", "-c"] # Use Bash as shell # Install all basic requirements RUN \ apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub && \ apt-get update && \ apt-get install -y wget unzip bzip2 libgomp1 build-essential ninja-build git && \ # Python wget -O Miniconda3.sh https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \ bash Miniconda3.sh -b -p /opt/python # NCCL2 (License: https://docs.nvidia.com/deeplearning/sdk/nccl-sla/index.html) RUN \ export CUDA_SHORT=`echo $CUDA_VERSION_ARG | grep -o -E '[0-9]+\.[0-9]'` && \ export NCCL_VERSION=2.13.4-1 && \ apt-get update && \ apt-get install -y --allow-downgrades --allow-change-held-packages libnccl2=${NCCL_VERSION}+cuda${CUDA_SHORT} libnccl-dev=${NCCL_VERSION}+cuda${CUDA_SHORT} ENV PATH=/opt/python/bin:$PATH # Create new Conda environment with RMM RUN \ conda create -n gpu_test -c rapidsai-nightly -c rapidsai -c nvidia -c conda-forge -c defaults \ python=3.9 rmm=22.04* cudatoolkit=$CUDA_VERSION_ARG cmake ENV GOSU_VERSION 1.10 # Install lightweight sudo (not bound to TTY) RUN set -ex; \ wget -O /usr/local/bin/gosu "https://github.com/tianon/gosu/releases/download/$GOSU_VERSION/gosu-amd64" && \ chmod +x /usr/local/bin/gosu && \ gosu nobody true # Default entry-point to use if running locally # It will preserve attributes of created files COPY entrypoint.sh /scripts/ WORKDIR /workspace ENTRYPOINT ["/scripts/entrypoint.sh"]